DOI QR코드

DOI QR Code

Effect of Ribitol and Plant Hormones on Aposymbiotical Growth of the Lichenforming Fungi of Ramalina farinacea and Ramalina fastigiata

  • Wang, Yi (Korean Lichen Research Institute, Sunchon National University) ;
  • Han, Keon-Seon (Korean Lichen Research Institute, Sunchon National University) ;
  • Wang, Xin Yu (Korean Lichen Research Institute, Sunchon National University) ;
  • Koh, Young-Jin (Korean Lichen Research Institute, Sunchon National University) ;
  • Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University)
  • Published : 2009.03.31

Abstract

This study was aimed at evaluating the growth promoting effect of symbiotic algal polyol (ribitol) and plant hormones on the lichen-forming fungi (LFF), Ramalina farinacea (CH050010 and 40403) and Ramalina fastigiata. The addition of ribitol to basal (malt-yeast extract) medium enhanced the relative growth rates of all three LFF. R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) showed 35.3%, 29.0% and 29.3% higher growth rates, respectively, compared to the control. IBA (indole-3-butyric acid) and TIBA (2,3,5-tridobenzoic acid) also increased growth rates of the LFF by 34 to 64% and 7 to 28%, respectively, compared to the control. The combination of ribitol with IBA or TIBA synergistically increased the growth of all LFF. For example, ribitol and IBA treatments increased growth rates of R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) by 79.4%, 40.3% and 72.8% in, respectively, compared to those grown on the basal medium. The stimulating effect of ribitol and IBA on the LFF growth induced vertical development of the fungal mass in culture. We suggest that lichen-forming fungal growth of Ramalina lichens can be stimulated aposymbiotically by supplementing polyols and plant hormones to the basal medium in the mass production of lichen secondary metabolites under large scale culture conditions.

Keywords

References

  1. Behera, B. C., Verma, N., Sonone, A. and Makhija, U. 2005. Evaluation of antioxidant potential of the cultured mycobiont of a lichen Usnea ghattensis. Phytother. Res. 19:58-64 https://doi.org/10.1002/ptr.1607
  2. Boustie, J. and Grube, M. 2007. Lichens - a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3:273-287 https://doi.org/10.1079/PGR200572
  3. Galun, M. 1988. Carbon metabolism. In: Handbook of Lichenology, Vol. I., pp. 147-156. Ed. M. Galun. CRC Press, Boca Raton, USA
  4. Honegger, R. 1991. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:553-578 https://doi.org/10.1146/annurev.pp.42.060191.003005
  5. Lines, C. X. M., Ratcliffe, R. G., Rees, T. A. V. and Southon, T. E. 1989. A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria cacicola Oxner. New Phytologist 111:447-456 https://doi.org/10.1111/j.1469-8137.1989.tb00707.x
  6. Mukhopadhyay, R., Chatterjee, S., Chatterjee, B. P. and Guha, A. K. 2005. Enhancement of biomass production of edible mushroom Pleurotus sajor-caju grown in whey by plant growth hormones. Process Biochem. 40:1241-1244 https://doi.org/10.1016/j.procbio.2004.05.006
  7. Oksanen, I. 2006. Ecological and biotechnological aspects of lichens. Appl. Microbiol. Biotechnol. 73:723-734 https://doi.org/10.1007/s00253-006-0611-3
  8. Oh, S.-O., Jeon, H. S., Lim, K. M., Koh, Y. J. and Hur, J. S. 2006. Antifungal activity of lichen-forming fungi isolated from Korean and Chinese lichen species against plant pathogenic fungi. Plant Pathol. J. 22:381-385 https://doi.org/10.5423/PPJ.2006.22.4.381
  9. Palmqvist, K., Dahlman, L., Honsson, A. and Nash III, T. H. 2008. The carbon economy of lichens. In: Lichen Biology. 2nd ed., pp. 182-215. Ed. T. M. Nash III. Cambridge University Press. Cambridge, UK
  10. Solhaug, K. A. and Gauslaa, Y. 2004. Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ. 27:167-176 https://doi.org/10.1111/j.1365-3040.2003.01129.x
  11. Stocker-Wörgötter, E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25:188-200 https://doi.org/10.1039/b606983p
  12. Wei, X., Jeon, H.-S., Han, K. S., Koh, Y. J. and Hur, J. S. 2008. Antifungal activity of lichen-forming fungi against Colletotrichum acutatum on hot pepper. Plant pathol. J. 24:202-206 https://doi.org/10.5423/PPJ.2008.24.2.202
  13. Yamamoto, Y., Ryuzo, M. and Yasuyuki Y. 1985. Tissue culture of usnea rubescens and Ramalina yasudae and production of usnic acid in their culutures. Agric. Boil. Chem. 49:3347-3348. Yamamoto, Y., Ryuzo, M., Sachiko, T. and Yasuyuki, Y. 1987
  14. Yamamoto, Y., Ryuzo, M., Sachiko, T. and Yasuyuki, Y. 1987. Effects of culture conditions on the growth of Usneaceae lichen tissue cultures. Plant Cell Physiol. 28:1421-1426
  15. Yamamoto, Y., Yasutaka, M., Masako, H. and Yasuhiro, K. 1993. Using lichen tissue cultures in modern biology. Bryologist 96:384-393 https://doi.org/10.2307/3243868

Cited by

  1. Identification of Auxin from Pseudomonas sp. P7014 for the Rapid Growth of Pleurotus eryngii Mycelium vol.50, pp.1, 2014, https://doi.org/10.7845/kjm.2014.3076