References
- Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover Publications, New York
- Ahn, B. J. and Kim, H. M. (2008). A new family of semicircular models: The semicircular Laplace distributions, Communications of the Korean Statistical Society, 15, 775-781 https://doi.org/10.5351/CKSS.2008.15.5.775
- Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound constrained optimization, SIAM Journal Scientific Computing, 16, 1190-1208 https://doi.org/10.1137/0916069
- Fisher, N. I. (1993). Statistical Analysis of Circular Data, Cambridge University Press, Cambridge
- Freund, J. E. (1961). A bivariate extension of the exponential distribution, Journal of the American Statistical Association, 56, 971-977 https://doi.org/10.2307/2282007
- Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products, 7th ed., Academic Press, San Diego
- Guardiola, J. H. (2004). The Semicircular Normal Distribution, Baylor University, Institute of Statistics
- Gumbel, E. J. (1960). Bivariate exponential distributions, Journal of the American Statistical Association, 55, 698-707 https://doi.org/10.2307/2281591
- Healy, M. J. R. (1968). Multivariate normal plotting, Applied Statistics, 17, 157-161 https://doi.org/10.2307/2985678
- Jammalamadaka, S. R. and Kozubowski, T. J. (2003). A new family of circular models: The wrapped Laplace distributions, Advances and Applications in Statistics, 3, 77-103
- Jammalamadaka, S. R. and Kozubowski, T. J. (2004). New families of wrapped distributions for modeling skew circular data, Communications in Statistics Theory and Methods, 33, 2059-2074 https://doi.org/10.1081/STA-200026570
- Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific Publishing, Singapore
- Johnson, N. L. and Katz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions, John Wiley & Sons, New York
- Jones, T. A. (1968). Statistical analysis of orientation data, Journal of Sedimentary Research, 38,61-67
- Jones, M. C. and Pewsey, A. (2005). A family of symmetric distributions on the circle, Journal of the American Statistical Association, 100, 1422-1428 https://doi.org/10.1198/016214505000000286
- Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, 2nd Ed., Springer-Verlag, New York
- Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses, 3rd Ed., Springer-Verlag, New York
- Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics, John Wiley & Sons, Chichester
- Pewsey, A. (2000). The wrapped skew-normal distribution on the circle, Communications in StatisticsTheory and Methods, 29, 2459-2472 https://doi.org/10.1080/03610920008832616
- Pewsey, A. (2002). Testing circular symmetry, The Canadian Journal of Statistics, 30, 591-600 https://doi.org/10.2307/3316098
- Pewsey, A. (2004). Testing for circular reflective symmetry about a known median axis, Journal of Applied Statistics, 31, 575-585 https://doi.org/10.1080/02664760410001681828
- Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution, Environmental and Ecological Statistics, 13, 257-269 https://doi.org/10.1007/s10651-005-0010-4
- Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data, Computational Statistics & Data Analysis, 52, 1516-1523 https://doi.org/10.1016/j.csda.2007.04.017
- Pewsey, A., Lewis, T. and Jones, M. C. (2007). The wrapped t family of circular distributions, Australian & New Zealand Journal of Statistics, 49, 79-91 https://doi.org/10.1111/j.1467-842X.2006.00465.x
- Smirnov, N. V. (1948). Tables for estimating the goodness of fit of empirical distributions, The Annals of Mathematical Statistics, 19, 279-281 https://doi.org/10.1214/aoms/1177730256