DOI QR코드

DOI QR Code

New Family of the Exponential Distributions for Modeling Skewed Semicircular Data

  • Published : 2009.02.28

Abstract

For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is straightforward to generate samples from the f-axial exponential distribution. Asymptotic result reveals two things. The first is that linear exponential distribution can be used to approximate the l-axial exponential distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property though it doesn't have strict memoryless property. Some trigonometric moments are also derived in closed forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial exponential distributions.

Keywords

References

  1. Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover Publications, New York
  2. Ahn, B. J. and Kim, H. M. (2008). A new family of semicircular models: The semicircular Laplace distributions, Communications of the Korean Statistical Society, 15, 775-781 https://doi.org/10.5351/CKSS.2008.15.5.775
  3. Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound constrained optimization, SIAM Journal Scientific Computing, 16, 1190-1208 https://doi.org/10.1137/0916069
  4. Fisher, N. I. (1993). Statistical Analysis of Circular Data, Cambridge University Press, Cambridge
  5. Freund, J. E. (1961). A bivariate extension of the exponential distribution, Journal of the American Statistical Association, 56, 971-977 https://doi.org/10.2307/2282007
  6. Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products, 7th ed., Academic Press, San Diego
  7. Guardiola, J. H. (2004). The Semicircular Normal Distribution, Baylor University, Institute of Statistics
  8. Gumbel, E. J. (1960). Bivariate exponential distributions, Journal of the American Statistical Association, 55, 698-707 https://doi.org/10.2307/2281591
  9. Healy, M. J. R. (1968). Multivariate normal plotting, Applied Statistics, 17, 157-161 https://doi.org/10.2307/2985678
  10. Jammalamadaka, S. R. and Kozubowski, T. J. (2003). A new family of circular models: The wrapped Laplace distributions, Advances and Applications in Statistics, 3, 77-103
  11. Jammalamadaka, S. R. and Kozubowski, T. J. (2004). New families of wrapped distributions for modeling skew circular data, Communications in Statistics Theory and Methods, 33, 2059-2074 https://doi.org/10.1081/STA-200026570
  12. Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific Publishing, Singapore
  13. Johnson, N. L. and Katz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions, John Wiley & Sons, New York
  14. Jones, T. A. (1968). Statistical analysis of orientation data, Journal of Sedimentary Research, 38,61-67
  15. Jones, M. C. and Pewsey, A. (2005). A family of symmetric distributions on the circle, Journal of the American Statistical Association, 100, 1422-1428 https://doi.org/10.1198/016214505000000286
  16. Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, 2nd Ed., Springer-Verlag, New York
  17. Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses, 3rd Ed., Springer-Verlag, New York
  18. Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics, John Wiley & Sons, Chichester
  19. Pewsey, A. (2000). The wrapped skew-normal distribution on the circle, Communications in StatisticsTheory and Methods, 29, 2459-2472 https://doi.org/10.1080/03610920008832616
  20. Pewsey, A. (2002). Testing circular symmetry, The Canadian Journal of Statistics, 30, 591-600 https://doi.org/10.2307/3316098
  21. Pewsey, A. (2004). Testing for circular reflective symmetry about a known median axis, Journal of Applied Statistics, 31, 575-585 https://doi.org/10.1080/02664760410001681828
  22. Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution, Environmental and Ecological Statistics, 13, 257-269 https://doi.org/10.1007/s10651-005-0010-4
  23. Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data, Computational Statistics & Data Analysis, 52, 1516-1523 https://doi.org/10.1016/j.csda.2007.04.017
  24. Pewsey, A., Lewis, T. and Jones, M. C. (2007). The wrapped t family of circular distributions, Australian & New Zealand Journal of Statistics, 49, 79-91 https://doi.org/10.1111/j.1467-842X.2006.00465.x
  25. Smirnov, N. V. (1948). Tables for estimating the goodness of fit of empirical distributions, The Annals of Mathematical Statistics, 19, 279-281 https://doi.org/10.1214/aoms/1177730256