References
- Alizadeh, A. A, Eisen, M. B., Davis, R. E., Ma, C, Lossos, I. S., Rosenwald, A., Boldrick, J. C, Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C, Greiner, T. C, Weisenburger, D. D.,Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C, Botstein, D., Brown, P.O., and Staudt, L. M. (2000). Distinct types of diffuse large B-celllymphoma identified by gene expression profiling, Nature, 403, 503-511 https://doi.org/10.1038/35000501
- Alon, U., BarKai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceeding of the National Academy of Sciences, 96, 6745-6750 https://doi.org/10.1073/pnas.96.12.6745
- Banfield, J. D., Raftery, A E. (1993). Model-based gaussian and non-gaussian clustering, Biometrics, 49, 803-822 https://doi.org/10.2307/2532201
- Bezdek, J. C (1981). Pattern Rcognition with Fuzzy Objective Function Algorithms, Plenum press, New York
- Bhattacharjee, A., Richards, W. G., Staunton, J. Li, C, Monti, S., Vasa, P., Ladd, C, Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander, E. S., Wong, W., Johnson, B. E., Golub, T. R., Sugarbaker, D. J. and Meyerson, M. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma sub-classes, Proceeding of the National Academy of Sciences, 98, 13790-13795 https://doi.org/10.1073/pnas.191502998
- Bittner, M., Meltzer, P. and Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C, Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C, Berens, M., Alberts, D., Sondak, V., Hayward, N. and Trent, J. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling, Nature, 406, 536-540 https://doi.org/10.1038/35020115
- Brown, P. O. and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays, The Chipping Forecast, 21, 33-37 https://doi.org/10.1038/4462
- Darlene, R. G., Debashis, G. and Erin, M. C (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240
- Datta, S. and Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data, Bioinformatics, 19, 459-466 https://doi.org/10.1093/bioinformatics/btg025
- Dembele, D. and Kastner, P (2003). Fuzzy C-means method for clustering microarray data, Bioinformatics, 19, 973-980 https://doi.org/10.1093/bioinformatics/btg119
- Dudoit, S. and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biology, 3, research0036.1-0036.21
- Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation, American Statistician, 37, 36-48 https://doi.org/10.2307/2685844
- Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of genomewide expression patterns, Proceeding of the National Academy of Sciences, 95, 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
- Fraley, C and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation, Journal of the American Statistical Association, 97, 611-631 https://doi.org/10.1198/016214502760047131
- Gasch, A. P. and Eisen, M. B. (2002). Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering, Genome Biology, 3, research0059
- Goldstein, D. R., Ghosh, D. and Conlon, E. M. (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240
- Golub, T. R., Sionim, D. K. and Tamayo, P., Huard, C, Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A, Bloomfield, C D., Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537 https://doi.org/10.1126/science.286.5439.531
- Grotkjaer, T., Winther, O., Regenberg, B., Nielsen, J. and Hansen, L. K. (2006). Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm. Bioinformatics, 22, 58-67 https://doi.org/10.1093/bioinformatics/btl212
- Guralnik, V. and Karypis, G. (2001). A scalable algorithm for clustering protein sequences, In Workshop on Data Mining in Bioinformatics, Proceedings of the U.S.A., 73-80
- Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2001). On clustering validation techniques, Journal of Intelligenet Information System, 17, 107-145 https://doi.org/10.1023/A:1012801612483
- Handl, J., Knowles, J. and Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis, Bioinformatics, 21, 3201-3212 https://doi.org/10.1093/bioinformatics/bti517
- Hastie, T., Tibshirani, R. and Fredman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer-Verlag, New York
- Hosel, V. and Walcher, S. (2001). Clustering techniques: A brief survey, Technical Report, Institute of Biomathematics and Biometry
- llana, B.-L. (2006). A generalized clustering problem, with application to DNA microarrays, Statistical Applications in Genetics and Molecular Biology, 5, Article 2 https://doi.org/10.1186/jbiol32
- Jain, A. K. and Dubes, R. C (1988). Algorithms for Clustering Data, Prentice-Hall, Inc., Upper Saddle River, New Jersey
- Jain, A K., Murty, M. N. and Flynn, P. J. (1999). Data clustering: A Review. ACM Computing Surveys, 31, 264-323 https://doi.org/10.1145/331499.331504
- Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, New York
- Kohonen, T. (1997). Self-Organizing Maps, Springer, Heidelberg
- Lander, E. S. (1999). Array of hope, Nature Genetics, 21, 3-4 https://doi.org/10.1038/4427
- Lee, J. W., Lee, J. B., Park, M. and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data, Computational Statistics & Data Analysis, 48, 869-885 https://doi.org/10.1016/j.csda.2004.03.017
- Leisch, F. (1999). Bagged clustering. Working Paper Serise 51, SFB, Adaptive Information Systems and Modeling in Economics and Management Science
- MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkely Symposium, 1, 281-297
- McLachlan, G. J. and Basford, K. E. (1988). Mixture models: inference and applications to clustering, Marcel Dekker, New York
- Milligan, G. W. and Cooper, M. C (1986). A study of the comparability of external criteria for hierarchical cluster analysis, Multivariate Behavioral Research, 21, 441-458 https://doi.org/10.1207/s15327906mbr2104_5
- Monti,S., Tamayo, P., Mesirov, J. and Golub, T. (2003). Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data, Machine Learning Journal, 52, 91-118 https://doi.org/10.1023/A:1023949509487
- Nagy, G. (1968). State of the art in pattern recognition, Proceedings of the IEEE, 56, 836-862 https://doi.org/10.1109/PROC.1968.6414
- Pensa, R. G., Robardet, C and Boulicaut, J.-F. (2005). LNAI 3721, 643-650
- Quanckenbush, J. (2001). Computational analysis of microarray data, Nature Review Genetics, 2, 418-427 https://doi.org/10.1038/35076576
- R Development Core Team. R: A language and environment for statistical computing. 2004 [http://www.Rproject. org]. R Foundation for Statistical Computing, Vienna, Austria [ISBN 3-900051-00-3]
- Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C, Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., Pergamenschikov, A, Lee, J. C, Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D. and Brown, P. O. (2000). Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics, 24, 227-234 https://doi.org/10.1038/73432
- Tamayo, P., Sionim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceeding of the National Academy of Science, 96, 2907-2912 https://doi.org/10.1073/pnas.96.6.2907
- Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. and Church, G. M. (1999). Systematic determination of genetic network architecture, Nature Genetics, 22, 281-285 https://doi.org/10.1038/10343
- Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays, Statistical Science, 18, 104-117 https://doi.org/10.1214/ss/1056397488
- Troyanskaya, O., Cantor, M., Sherlock, G. Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525 https://doi.org/10.1093/bioinformatics/17.6.520
- Tseng, G. C and Wong, W. H. (2005). Tight clustering: A Resamping-based approach for identifyng stable and tight patterns in data, Biometrics, 61, 10-16 https://doi.org/10.1111/j.0006-341X.2005.031032.x
- Verhaak, R. G. W., Staal, F. J. T., Valk, P. J. M., Lowenberg, B., Reinders, M. J. and de Ridder, D. (2006). The effect of oligonucleotide microarray data pre-processing on the analysis of patient-cohort studies, BMC Bioinformatics, 7, 105 https://doi.org/10.1186/1471-2105-7-105
- Yang, Y. H., Dudoit, S., Luu, P. and Speed, T. (2001). Normalization for cDNA microarray data, Optical Technologies and Informatics, 42, 141-152
- Yeung, K. Y., Fraley, C, Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987 https://doi.org/10.1093/bioinformatics/17.10.977
- Yeung, K. Y., Haynor, D. R. and Ruzzo, W. L. (2001). Validating clustering for gene expression data, Bioinformatics, 17, 309-318 https://doi.org/10.1093/bioinformatics/17.4.309
- Yeung, K.. Y. and Ruzzo, W. L. (2001). An empirical study on principal component analysis for clustering gene expression data, Bioinformatics, 17, 763-774 https://doi.org/10.1093/bioinformatics/17.9.763