DOI QR코드

DOI QR Code

Descriptive and Systematic Comparison of Clustering Methods in Microarray Data Analysis

  • Kim, Seo-Young (Statistics Research Institute, Korea National Statistical Office)
  • Published : 2009.02.28

Abstract

There have been many new advances in the development of improved clustering methods for microarray data analysis, but traditional clustering methods are still often used in genomic data analysis, which maY be more due to their conceptual simplicity and their broad usability in commercial software packages than to their intrinsic merits. Thus, it is crucial to assess the performance of each existing method through a comprehensive comparative analysis so as to provide informed guidelines on choosing clustering methods. In this study, we investigated existing clustering methods applied to microarray data in various real scenarios. To this end, we focused on how the various methods differ, and why a particular method does not perform well. We applied both internal and external validation methods to the following eight clustering methods using various simulated data sets and real microarray data sets.

Keywords

References

  1. Alizadeh, A. A, Eisen, M. B., Davis, R. E., Ma, C, Lossos, I. S., Rosenwald, A., Boldrick, J. C, Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C, Greiner, T. C, Weisenburger, D. D.,Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C, Botstein, D., Brown, P.O., and Staudt, L. M. (2000). Distinct types of diffuse large B-celllymphoma identified by gene expression profiling, Nature, 403, 503-511 https://doi.org/10.1038/35000501
  2. Alon, U., BarKai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceeding of the National Academy of Sciences, 96, 6745-6750 https://doi.org/10.1073/pnas.96.12.6745
  3. Banfield, J. D., Raftery, A E. (1993). Model-based gaussian and non-gaussian clustering, Biometrics, 49, 803-822 https://doi.org/10.2307/2532201
  4. Bezdek, J. C (1981). Pattern Rcognition with Fuzzy Objective Function Algorithms, Plenum press, New York
  5. Bhattacharjee, A., Richards, W. G., Staunton, J. Li, C, Monti, S., Vasa, P., Ladd, C, Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander, E. S., Wong, W., Johnson, B. E., Golub, T. R., Sugarbaker, D. J. and Meyerson, M. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma sub-classes, Proceeding of the National Academy of Sciences, 98, 13790-13795 https://doi.org/10.1073/pnas.191502998
  6. Bittner, M., Meltzer, P. and Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C, Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C, Berens, M., Alberts, D., Sondak, V., Hayward, N. and Trent, J. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling, Nature, 406, 536-540 https://doi.org/10.1038/35020115
  7. Brown, P. O. and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays, The Chipping Forecast, 21, 33-37 https://doi.org/10.1038/4462
  8. Darlene, R. G., Debashis, G. and Erin, M. C (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240
  9. Datta, S. and Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data, Bioinformatics, 19, 459-466 https://doi.org/10.1093/bioinformatics/btg025
  10. Dembele, D. and Kastner, P (2003). Fuzzy C-means method for clustering microarray data, Bioinformatics, 19, 973-980 https://doi.org/10.1093/bioinformatics/btg119
  11. Dudoit, S. and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biology, 3, research0036.1-0036.21
  12. Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation, American Statistician, 37, 36-48 https://doi.org/10.2307/2685844
  13. Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of genomewide expression patterns, Proceeding of the National Academy of Sciences, 95, 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
  14. Fraley, C and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation, Journal of the American Statistical Association, 97, 611-631 https://doi.org/10.1198/016214502760047131
  15. Gasch, A. P. and Eisen, M. B. (2002). Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering, Genome Biology, 3, research0059
  16. Goldstein, D. R., Ghosh, D. and Conlon, E. M. (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240
  17. Golub, T. R., Sionim, D. K. and Tamayo, P., Huard, C, Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A, Bloomfield, C D., Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537 https://doi.org/10.1126/science.286.5439.531
  18. Grotkjaer, T., Winther, O., Regenberg, B., Nielsen, J. and Hansen, L. K. (2006). Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm. Bioinformatics, 22, 58-67 https://doi.org/10.1093/bioinformatics/btl212
  19. Guralnik, V. and Karypis, G. (2001). A scalable algorithm for clustering protein sequences, In Workshop on Data Mining in Bioinformatics, Proceedings of the U.S.A., 73-80
  20. Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2001). On clustering validation techniques, Journal of Intelligenet Information System, 17, 107-145 https://doi.org/10.1023/A:1012801612483
  21. Handl, J., Knowles, J. and Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis, Bioinformatics, 21, 3201-3212 https://doi.org/10.1093/bioinformatics/bti517
  22. Hastie, T., Tibshirani, R. and Fredman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer-Verlag, New York
  23. Hosel, V. and Walcher, S. (2001). Clustering techniques: A brief survey, Technical Report, Institute of Biomathematics and Biometry
  24. llana, B.-L. (2006). A generalized clustering problem, with application to DNA microarrays, Statistical Applications in Genetics and Molecular Biology, 5, Article 2 https://doi.org/10.1186/jbiol32
  25. Jain, A. K. and Dubes, R. C (1988). Algorithms for Clustering Data, Prentice-Hall, Inc., Upper Saddle River, New Jersey
  26. Jain, A K., Murty, M. N. and Flynn, P. J. (1999). Data clustering: A Review. ACM Computing Surveys, 31, 264-323 https://doi.org/10.1145/331499.331504
  27. Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, New York
  28. Kohonen, T. (1997). Self-Organizing Maps, Springer, Heidelberg
  29. Lander, E. S. (1999). Array of hope, Nature Genetics, 21, 3-4 https://doi.org/10.1038/4427
  30. Lee, J. W., Lee, J. B., Park, M. and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data, Computational Statistics & Data Analysis, 48, 869-885 https://doi.org/10.1016/j.csda.2004.03.017
  31. Leisch, F. (1999). Bagged clustering. Working Paper Serise 51, SFB, Adaptive Information Systems and Modeling in Economics and Management Science
  32. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkely Symposium, 1, 281-297
  33. McLachlan, G. J. and Basford, K. E. (1988). Mixture models: inference and applications to clustering, Marcel Dekker, New York
  34. Milligan, G. W. and Cooper, M. C (1986). A study of the comparability of external criteria for hierarchical cluster analysis, Multivariate Behavioral Research, 21, 441-458 https://doi.org/10.1207/s15327906mbr2104_5
  35. Monti,S., Tamayo, P., Mesirov, J. and Golub, T. (2003). Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data, Machine Learning Journal, 52, 91-118 https://doi.org/10.1023/A:1023949509487
  36. Nagy, G. (1968). State of the art in pattern recognition, Proceedings of the IEEE, 56, 836-862 https://doi.org/10.1109/PROC.1968.6414
  37. Pensa, R. G., Robardet, C and Boulicaut, J.-F. (2005). LNAI 3721, 643-650
  38. Quanckenbush, J. (2001). Computational analysis of microarray data, Nature Review Genetics, 2, 418-427 https://doi.org/10.1038/35076576
  39. R Development Core Team. R: A language and environment for statistical computing. 2004 [http://www.Rproject. org]. R Foundation for Statistical Computing, Vienna, Austria [ISBN 3-900051-00-3]
  40. Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C, Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., Pergamenschikov, A, Lee, J. C, Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D. and Brown, P. O. (2000). Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics, 24, 227-234 https://doi.org/10.1038/73432
  41. Tamayo, P., Sionim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceeding of the National Academy of Science, 96, 2907-2912 https://doi.org/10.1073/pnas.96.6.2907
  42. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. and Church, G. M. (1999). Systematic determination of genetic network architecture, Nature Genetics, 22, 281-285 https://doi.org/10.1038/10343
  43. Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays, Statistical Science, 18, 104-117 https://doi.org/10.1214/ss/1056397488
  44. Troyanskaya, O., Cantor, M., Sherlock, G. Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525 https://doi.org/10.1093/bioinformatics/17.6.520
  45. Tseng, G. C and Wong, W. H. (2005). Tight clustering: A Resamping-based approach for identifyng stable and tight patterns in data, Biometrics, 61, 10-16 https://doi.org/10.1111/j.0006-341X.2005.031032.x
  46. Verhaak, R. G. W., Staal, F. J. T., Valk, P. J. M., Lowenberg, B., Reinders, M. J. and de Ridder, D. (2006). The effect of oligonucleotide microarray data pre-processing on the analysis of patient-cohort studies, BMC Bioinformatics, 7, 105 https://doi.org/10.1186/1471-2105-7-105
  47. Yang, Y. H., Dudoit, S., Luu, P. and Speed, T. (2001). Normalization for cDNA microarray data, Optical Technologies and Informatics, 42, 141-152
  48. Yeung, K. Y., Fraley, C, Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987 https://doi.org/10.1093/bioinformatics/17.10.977
  49. Yeung, K. Y., Haynor, D. R. and Ruzzo, W. L. (2001). Validating clustering for gene expression data, Bioinformatics, 17, 309-318 https://doi.org/10.1093/bioinformatics/17.4.309
  50. Yeung, K.. Y. and Ruzzo, W. L. (2001). An empirical study on principal component analysis for clustering gene expression data, Bioinformatics, 17, 763-774 https://doi.org/10.1093/bioinformatics/17.9.763