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Abstract

There have been many new advances in the development of improved clustering methods for microarray
data analysis, but traditional clustering methods are still often used in genomic data analysis, which may
be more due to their conceptual simplicity and their broad usability in commercial software packages than
to their intrinsic merits. Thus, it is crucial to assess the performance of each existing method through a
comprehensive comparative analysis so as to provide informed guidelines on choosing clustering methods. In
this study, we investigated existing clustering methods applied to microarray data in various real scenarios.
To this end, we focused on how the various methods differ, and why a particular method does not perform
well. We applied both internal and external validation methods to the following eight clustering methods

using various simulated data sets and real microarray data sets.
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1. Introduction
1.1. Clustering in microarray data

DNA microarrays are a powerful and promising biotechnology tool that enables the expression
levels of thousands of genes to be monitored simultaneously. The high-throughput analysis of gene
information made possible by microarrays has led to revolutionary changes in bioinformatics research
(Brown and Botstein, 1999; Lander, 1999). Microarray experiments can be used to determine
the genes that exhibit similar expression patterns across samples (i.e., coexpressed), which may
indicate a common function. Similarly, samples with similar expression profiles may share common
characteristics, such as being from patients with the same disease. Identifying such groups and
samples is dependent on clustering analysis of the vast amounts of microarray data generated.
Many of the scenarios that can occur in microarray experiments are not supported in all existing
clustering methods, which should be taken into consideration when selecting the one to use in a
particular analysis. For example, a gene may be involved in more than one biological process,
and hence genes included in the same subset of these processes may be represented in overlapping
clusters. Moreover, genes that are not related to the samples under investigation may show a
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nearly constant expression pattern. However, even the best clustering methods are unlikely to
provide meaningful results if too much of the data are unreliable. Therefore, gene selection should
form an integral part of clustering analysis. '

1.2. Traditional clustering methods still predominate in microarray analyses

Clustering has many applications in studies involving microarray data. In particular, it is essen-
tial in the explanatory analysis of gene expression data (Eisen et al., 1998; Golub et al., 1999;
Quanckenbush, 2001). Since a cluster analysis relies heavily on limited biological and medical in-
formation (e.g., tumor classification), the results are not only sensitive to noise but are also prone
to overfitting. There have been many advances in the development of improved clustering methods
for microarray data analysis, but the use of traditional clustering methods such as agglomerative
hierarchical clustering (AHC, Eisen et al., 1998), DIANA (Datta and Datta, 2003), k-means (KM,
Tavazoie et al., 1999), partitioning around medoids (PAM, Kaufman and Rousseeuw, 1990; Dudoit
and Fridlyand, 2002), self-organizing maps (SOM, Quanckenbush, 2001; Kohonen, 1997; Tamayo
et al., 1999), fuzzy c-means (FCM, Bezdek, 1981; Gasch and Eisen, 2002; Dembélé and Kastner,
2003), model-based clustering with a Gaussian mixture model (MBC, Yeung et al., 2001; Fraley
and Raftery, 2002) and bagged clustering (BAG, Leisch, 1999) predominates in genomic data anal-
ysis, which may be more due to their conceptual simplicity and their broad usability in commercial
software packages than to their intrinsic merits (Handl et al., 2005).

1.3. Role of a comparative study of clustering methods

Cluster analysis is a very complicated interactive process, and comparing clustering methods is
not easy because formalizing the comparison as an optimization problem is highly dependent on
the scenario under consideration. There were many studies on clustering methods (Yeung et al.,
2001; Goldstein et al., 2002; Datta and Datta, 2003) that provide novel measures and study the
comparative performances of their particular measures respectively. However, there are seldom
studies using extensive and systematic comparisons based on various validation methods whilst
considering data preprocessing strategies, class types, and data characteristics. This may be one
reason why it is difficult to choose the most appropriate clustering method for a specific type of
data from a microarray experiment. Instead of using the new methods that have been developed,
it is commonplace for researchers to perform traditional clustering method to identify patterns in
microarray data, which may not represent the best approach in a given scenario. Therefore, it is
essential to assess the performances of the existing clustering methods through a comprehensive
comparative study.

1.4. Goal of this study

We considered clustering of samples based on gene expression profiles. The main goal of this study
was to systematically compare the predominant traditional clustering methods, and to provide some
informed guidance on the behavior of each type of cluster evaluation. We focused on (1) confirming
how well each method performs on a given data set, (2) finding why a particular method does not
perform well and (3) determining how the different methods compare with each other. We evaluated
clustering results using internal and external cluster validation measures and with several data sets,
so as to determine which were more suited to particular types of data. Thus, our comparative
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study did not aim to show which method is the best overall, but to show the merits and demerits
of each method on the basis of various types of data, together with providing an understanding of
several validations. In fact biologist suffer from selecting an optimal clustering method, and also
they prefer to choose one among commom methods. Because these common methods are familiar
to them, besides the methods are easy to analyze and understand on statistical software. Thus this
study can be present a good gidence for selecting a clustering method for microarray data analysis.

1.5. Implementation of this study

We tested eight existing methods (AHC, FCM, PAM, KM, SOM, DIANA, BAG and MBC) using
six real gene expression data sets and four types of simulated data (with three data sets of each
type). We also considered data preprocessing by locally weighted scatterplot smoothing (LOWESS)
normalization (Yeung et al., 2001; Yang et al., 2001), gene selection and missing-value imputation.
For the evaluation of all clustering methods, we have used internal indices such as the silhouette
index (sil, Kaufman and Rousseeuw, 1990), figure of merit (FOM, Yeung et al., 2001), and the
average proportion of the nonoverlap measure (NOM, Datta and Datta, 2003), and external indices
such as the adjusted Rand index (aRand, Yeung and Ruzzo, 2001). As described previously, internal
indices can be used to discover whether a particular method performs well, while external indices
are good for assessing the performance of a method on a data set (Handl et al., 2005).

2. Clustering Methods
2.1. Hierarchical clustering

Hierarchical clustering methods are used when a stratified structure of classes at different hetero-
geneity levels is desired. The resulting clusters can be represented as nodes of a dendrogram. The
several hierarchical clustering methods differ in how they derive class distances from the dissimi-
larities of the objects. Two major concepts are used in implementations of hierarchical clustering
techniques: divisive and agglomerative methods. It is known that hierarchical methods are more
versatile in the sense that they can be more easily adapted to distance measures other than the
usual distance metric. Moreover, the agglomerative method works well on data sets containing
nonisotropic clusters including well-separated, chain-like, and concentric clusters, whereas a typi-
cal partitioning methods works well only on data sets having isotropic clusters (Nagy, 1968). The
greatest weakness of hierarchical methods is the computational effort involved, which makes them
infeasible for large data sets. In our analysis, we used both agglomerative hierarchical clustering
using Wards method and divisive hierarchical clustering using DIANA (Hosel and Walcher, 2001).

2.1.1. Agglomerative hierarchical clustering Agglomerative methods generally group individual
objects together to form larger and larger classes, according to the following procedure: (1) begin
with 7 single clusters and compute the proximity matrix containing the distances between all pairs
of objects, (2) find the most similar pairs of clusters using the proximity matrix and merge these
pairs of clusters into single clusters and (3) update the proximity matrix to reflect this merge
operation and iterate until one cluster consisting of all objects remains. Wards method assigns a
homogeneity measure to every partitioning of the object set into k classes. According to the general
strategy, the merging of two classes results in a new partitioning with reduced homogeneity.

2.1.2. DIANA DIANA iteratively splits the entire data set until every class consists of a single
object. The object in the cluster that is most dissimilar to the other elements is then separated to
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form a so-called splinter group, and the remaining elements should then be added to this splinter
group. : '

2.2. Partitioning clustering

The partitioning methods are designed to find convex clusters in the data, such that each segment
can be represented by a cluster center. The common methods PAM (Kaufman and Rousseeuw, 1990)
and KM (MacQueen, 1967) are distinguished by the cluster centers in KM being averages of objects,
whereas in PAM they are the actual centers. Partitioning methods work better with large data sets,
since the solutions for different numbers of clusters need not be nested as in hierarchical methods.
However, they are not as flexible as hierarchical methods with respect to distance measures.

2.2.1. Partitioning around medoids PAM can be regarded as a generalization of KM clustering to
arbitrary dissimilarity matrices. PAM is based on the search for k representative medoids among the
objects to be clustered. After finding these k medoids, k clusters are built by allocating each object
to the nearest medoid, with the goal of minimizing the sum of the dissimilarities of the objects to
their closest medoid. The k initial sets of medoids are first sequentially selected, and then points
are swapped so as to minimize the objective function by replacing one medoid with another entry,
with this step iterated until convergence. PAM is known to be more robust and computationally
efficient than KM.

2.2.2. K-means KM partitions data into k clusters that are internally similar but externally
dissimilar. The goal is to divide the objects into k clusters such that some metric relative to the
centroids of the clusters is minimized. The algorithm first assigns each object to a cluster that
has the closest centroid, and then sets the initial positions for the cluster centroids; that is, when
all objects have been assigned, the positions of the k centroids are recalculated. This procedure is
continued until the objects are optimally assigned to clusters (Guralnik and Karypis, 2001). In this
process, KM should have little difficulty with missing data because means can still be updated and
distance can still be computed.

2.3. Fuzzy c-means clustering

In non fuzzy clustering methods such as PAM, KM and AHC, each object belongs to exactly one
cluster. Fuzzy clustering extends this notion to associate each object with every cluster using a
membership function. For FCM, an initial fuzzy partition of the n objects into & clusters is first
selected as the n x k membership matrix, where the elements of this matrix represent the grades of
membership of objects in the cluster. The membership matrix is then used to find the value of a
fuzzy criterion (e.g., a weighted squared error criterion function) associated with the corresponding
partition. FCM attempts to find the most characteristic object in each cluster, which can be
considered the center of the cluster, and then the degree of membership for each object. Even
though it is better than KM at avoiding local minima, FCM can still converge to local minima of
the squared error criterion.

2.4. Neural network clustering

SOM is an effective method for visualizing high-dimensional data and performing clustering. SOM
clustering is based on the concepts of neural networks. It converts complex, nonlinear statistical rela-
tionships between high-dimensional data into simple geometric relationships on a low-dimensional
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display. The SOM network has input and output nodes. The input layer has a node for each
attribute of the record, where each one is connected to every output node. Each connection is
associated with a weight that determines the position of the corresponding output node. Thus as
the algorithm changes the weights appropriately, the output nodes move so as to form clusters.

More details on the SOM, including on the numerical procedure, are available elsewhere (Hastie et
al., 2001).

2.5. Bagged clustering

The basic idea of BAG is to stabilize partitioning methods such as KM by repeatedly running the
cluster algorithm and combining the results (Leisch, 1999). That is, a partitioning cluster algorithm
such as KM is run repeatedly on bootstrap samples from the original data. The resulting cluster
centers are then combined using a hierarchical cluster algorithm. However, this method still suffers
from the problem when several cluster results are obtained by repeating the procedure: there is no
obvious way of choosing the best one, or combining them (Leisch, 1999).

2.6. Model-based clustering

The idea behind MBC is to regard the data as coming from a mixed distribution. MBC used in our
analysis employs expectation-maximization(EM) initialized by hierarchical clustering for parameter-
ized Gaussian mixture models (Fraley and Raftery, 2002). The two approaches are complementary:
model-based hierarchical agglomeration tends to produce reasonably good partitions even when
initialized without any information about the groupings, whereas initialization is critical in EM
(McLachlan and Basford, 1988; Jain et al., 1999) because the likelihood surface tends to have mul-
tiple modes. The number of clusters is chosen to maximize the Bayesian information criterion by
initializing EM with partitions from MBC agglomeration. A detailed description of the theoretical
concepts is available elsewhere (Banfield and Raftery, 1993; Fraley and Raftery, 2002).

3. Evaluation of Clusters
3.1. Adjusted figure of merit

FOM assesses the quality of clustering results by a jackknife approach (Efron and Gong, 1983). In
FOM, (1) the n objects are assumed to fall into ¢ true classes, with the ith class containing a;n
objects, where 0 < a; < 1and Y ;_, a; = 1, (2) the expression levels of objects in class i under
condition e are independent normally distributed random variables with mean u; . and variance
0'1-2’6 and (3) each cluster is assumed to contain objects from only one class, and there are clusters
containing class-i objects. This assumption is valid when the clustering method favors equal-sized

clusters. The adjusted FOM (Yeung et al., 2001) is given by

FOM(k) = i x i(am - aik)age/\/’l;—k.

e=1 i=1

3=

3.2. The average proportion of the nonoverlap measure

NOM computes the average proportion of objects that are not placed in the same cluster by the
clustering method under consideration on the basis of the entire data set and the data sets obtained
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by deleting the expression levels at a time (Datta and Datta, 2003):
1 n i Ca i Ca,O)
NOM(k -n— ; ; ( —C“B)—-> )

where C** denotes the cluster containing object a (a = 1,...,n) in the clustering based on the data
set from which the observations at variable v; (i = 1,...,[) have been deleted, and C*? denotes the
original cluster containing object a in the clustering based on the entire data set. A good algorithm
is expected to yield a small value of NOM. However, NOM is able to be affected by the numbers of
objects and variables.

3.3. Adjusted rand index

The aRand computes the extent of agreement between two partitions: C = {C1,Ca,...,Ck, } is a
clustering structure of a data set X, and P = {Py, Pa,..., Pk, } is a defined partition of the data.
External indices of the partition agreement can be expressed in terms of a contingency table with
entries n;;, which are the numbers of objects of classes ¢ and j that are members of both clusters C;
and P; (¢ =1,2,..:,k1, 7 =1,2,...,k2). Let n;. denote the number of objects in cluster C; (i.e.,
row sums), and let n.; denote the number of objects in cluster P; (i.e., column sums). The aRand
can then be used to assess and compare the performance of different clustering methods (Yeung
and Ruzzo, 2001). A higher value of which means a higher correspondence between two partitions:

Z i Ca — <Z n;. C2 Z n.; C2> /nCQ
ij i j
(Tner T - (TuaTaue) /o
i 2 2 g

aRand =

4. Data Sets, Preprocessing and Software

4.1. Data sets

We used both simulated and real gene expression data sets in comparisons of the eight predominant
clustering methods. We employed six simulated data sets with various cluster shapes, and degrees
of overlap(Table 4.1). Table 4.2 provides information on the six real gene expression data sets,
briefly describing the microarray experiment applied to the various types of data set and the main
features of the data sets used.

4.1.1. Simulated data sets

Sdatal. Three clusters in two dimensions: 25, 25 and 50 objects are generated from bivariate nor-
mal distribution in each of the three clusters with means (0, 0), (0,5) and (5, —3), respectively,
and 2I covariance matrix, where the matrix I is an identity matrix.

Sdata2. Four overlapping clusters in 10 dimensions: each cluster is chosen to have 50 objects from
normal distribution with an appropriate mean vector and an identity covariance matrix. The
cluster means are randomly chosen from a bivariate normal distribution Nz(0,2.5I). Each
simulated where the Euclidean distance between the two closest objects belonging to different
clusters is less than 1 discarded.
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Table 4.1. Description of five simulated datasets

Dataset Actual Num. of Num. of objects Degree of overlap
clusters dimensions in each cluster among clusters

Sdatal 3 2 25, 25, 50 None

Sdata2 4 10 50, 50, 50, 50 Strong

Sdata3 2 3 100, 100 None

Sdatad 3 13 50, 50, 50 Strong

Sdatab 2 10 50, 50 Weak

Sdata6 3 70 15, 15, 15 Weak(with correlations)

Sdata3. Two elongated clusters in three dimensions: cluster 1 is generated as follows. Set 21 =
22 = x3 = t with ¢ taking on 100 equally spaced values from —0.5 to 0.5 and then let Gaussian
noises with standard deviation 0.1 be added to each variable. Cluster 2 is generated in the
same way except that the value 10 is added to each variable. These result in elongated
clusters, stretching out along the main diagonal of a three dimensional cube.

Sdata4. Three overlapping clusters in 13 dimensions, 10 noise variables: the first three variables
in each of three clusters have a multivariate normal distribution with mean vectors (0,0,0),
(2,2, ~2) and (~2,2,~2), respectively, and with covariance matrix >, where oy; = 1,
1 <i<3and o3 =05, 1 <4i7# j <3 The remaining 10 noise variables are generated
independently from the Nio(0, I} distribution. Each cluster contains 50 objects.

Sdata5. Two overlapping clusters in 10 dimensions, 9 noise variables. Each cluster contains 50
objects. The first variables in each cluster were generated from normal distribution with
mean 0 and 2.5, respectively, and with variance 1. The remaining nine noise variables are
generated from the Ny(0, I) distribution.

Sdata6. Three clusters with interactions between variables. This clusters induced by variables 1
to 20 and 21 to 40 variables that are generated to have different expression profiles across
objects; for the first 20 variables, ¢« = 1,...,20, each cluster is chosen to have 15 objects
from N(0,1), N(3,1) and N(-=3,1), and the other 20 variables, 1 = 21,...,40, each cluster
is chosen to have 15 objects from N(0,1) and N(—3,1) and N(3,1). The remaining 30 noise
variables are generated as Nsp(0, I).

Note that above configurations in generating the datasets were considered in earlier papers (Kauf-

man and Rousseeuw, 1990; Fraley and Raftery, 2002; Ilana, 2006). The configurations are summa-
rized in Table 4.1.

4.1.2. Microarray data The clustering methods described in section of Clustering method were
applied to gene expression data from six published cancer microarray studies. The following Colon
and Lymp were used as the representative heterogeneous data sets, and Lung and NCI were used
as the large samples.

Leukemia. The Leuk data set consisted of 72 samples on the Affymetrix high-density oligonu-
cleotide chips containing 3571 human genes (Golub et al., 1999). The data comprised 47
ALL patients (38 ALL B-cells, 9 ALL T-cells) and 25 AML patients. These data were ob-
tained after performing preprocessing as described previously (Dudoit and Fridlyand, 2002;
Lee et al., 2005).

Melanoma. The Mela data set consisted of 38 samples from both tissue biopsies and tumor cell
lines: 31 cutaneous melanomas and 7 controls (Bittner et al., 2000). Gene expression levels
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Table 4.2, Description of real gene expression data sets

Num. of Num. of Num. of
Data Components of classes
samples genes

Chip t,
class b type

AML (25), ALL B-cells (38) .
ki b Aﬁ"
ALL T-cells (9) 72 3571 ymetrlx

Tumor tissue (40),

_ AFF .
golon R somalcoonen) 2w hmem
B-cells chronic (11), FL (9),
- b ! D
yme k=3 bweeLy T oo
AD (139), SQ (21), COID (20), .
— ) ) 3 AfF
e BTPscre@NLOn) 2 mm e
Breast cancer (7), CNS (6), colon cancer (7),
NCI k=8 leukemia (6), melanoma (8), NSCLC (9), 57 8150 <DNA

ovarian cancer (6), renal cancer (8),
prostate cancer (2)

were measured using cDNA microarrays containing 8150 human genes. The filtering method
excluded genes with expression ratios greater than 50 and less than 0.02 (Darlene et al., 2002),
which resulted in 3613 of the 8150 genes being used in the analysis.

Lung cancer. The Lung data set has been described previously (Bhattacharjee et al., 2001). This
data set came from a study of gene expression in five types of lung carcinoma: 139 lung
AD, 21 SQ, 20 COID, 6 small-cell lung carcinomas cases and 17 NL. Gene expression levels
were measured using Affymetrix high-density oligonucleotide arrays containing 12000 human
genes.

Colon cancer. The Colon data set consisted of both 40 normal samples and 22 tumor samples
on the Affymetrix oligonucleotide chips containing 6500 human genes (Alon et al., 1999), of
which we used 2000 genes of the 62 samples as described previously (Alon et al., 1999).

Lymphoma. The Lymp data set came from a study of cDNA gene expression, and these data were
composed of 92 samples for the three most prevalent adult lymphoid malignancies: B-CLL,
FL and DLBCL (Alizadeh et al., 2000). We used 62 samples and 4026 genes, including 11 of
B-CLL, 9 of FL and 41 of DLBCL as described previously (Lee et al., 2005).

NCI60. The NCI data set consisted of 60 cell lines (Ross et al., 2000} derived from tumors with
different sites of origin: 7 breast cancer, 6 central nervous system, 7 colon cancer, 6 leukemia,
8 melanoma, 9 non-small-cell lung carcinoma, 6 ovarian cancer, 8 renal cancer, 2 prostate
cancer and 1 unknown. We first selected 8150 genes that had at most three missing values
and used 57 samples excluding two classes of 2 prostate cancer and 1 unknown classes with
small samples.

4.2. Data preprocessing and software

4.2.1. Missing value imputation For the Lymp and NCI data sets, missing values were imputed
by the k-nearest-neighbor algorithm using k = 5 neighbors to eéstimate the missing value, with the
selection of the neighbors based on sample correction (Troyanskaya et al., 2001).

4.2.2. Normalization The samples were normalized by LOWESS across genes as described pre-
viously (Yeung et al., 2001). The main idea of LOWESS involves obtaining the calibration factor



Compatison of Clustering Method in Microarry Data 97

Tabie 4.3. R packages and functions corresponding to clustering, validation, missing value imputation, and gene selection method
used in the study.

Methods Package Function
AHC(Agglomerative hierarchical clustering) stats hclust
FCM(Fuzzy c-means) el071 cmeans
PAM({Partitioning around medoid) cluster pam
Clustering KM (K-means) stats kmeans
SOM (Self-organizing map) som som
DIANA(Diana) cluster diana
BAG{Bagged clustering) el071 belust
......... MBC(Model-based clustering) mclust Mclust.
""""""""""" sil(Sithouette) T T Neuster  silhouette
L FOM({Figure of merit) SAGx fom
Validation NOM({Non-overlap measure} our code using R
_______ o aRand(Adjusted Rand index}) el071 classAgreement
 Missing value K-nearest neighbor 7 cdlass kan
" Gene selection Coeficient of variation our code using R

using a locally weighted polynomial regression of the intensity scatterplot. It is practically reason-
able to apply different preprocessing method by cDNA and Affymetrix microarrays. Intensity values
measured by Affymetrix microarray can be normalized by various preprocessing methods, such as
dChip, GCRMA, RMA and MAS. The previous study presented that, on practical applications of
microarray-based research, the choice of preprocessing method is of minor influence on the final
analysis outcome of large microarray studies (Verhaak ef al., 2006). Also this study is focusing
to compare the clustering method and thus author is going to apply just LOWESS normaliza-
tion method on convience of data handling procedure. Compared to other methods, the LOWESS
method is known to be robust across a wider range of types of data sets. Note that microarray
data need to be normalized so as to remove systematic variations in the experiments that affect the
measured expression levels. )

4.2.3. Variable selection Expression levels were measured for thousands of genes in each of the data
sets. Many of the genes exhibited nearly constant expression levels, as indicated by the coeflicient
of variation across the objects (Dudoit and Fridlyand, 2002). These genes did not seem to be
useful for classification purposes; therefore, we only used genes with a high coefficient of variation
of expression levels across classes from the clustering process. We selected the 100 genes with the
highest coefficients of variation from the Leuk, Mela, Lymp, and Colon data sets, and 200 genes
from Lung and NCI data sets (since they contain more classes). Because an arbitrary selection
method was used, as described previously (Dudoit and Fridlyand, 2002) we also tested the effects
of increasing the number of genes to 300~500 or decreasing the mumber to less than 100; this had
no significant effect on the results.

4.2.4. Software and availability All simulation and analyses were carried out with version 2.3 of R
(http://www.R-project.org) using packages stats, e1071, cluster, som, mclust, SAGx and class. For
NOM and gene selection, we have directly written the source code of them by R language. Table
4.3 summarizes the package and function corresponding to each method used in our study. And R
codes and data sets used in the study are available from the authors on requests.
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Table 5.1. Estimating the number of clusters by applying the eight methods to the simulated data sets
Data set Actual FCM PAM KM SOM AHC DIANA BAG MBC

Sdatal 3 3 3 3 3 3 3 3 3
Sdata2 4 4 3 2 4 2 3 2 2
Sdata3 2 2 2 2 2 2 2 2 2
Sdatad 3 2 2 2 2 2 5 2 2
Sdatab 2 2 2 2 2 2 2 2 2
Sdata6 3 3 3 2 3 2 3 2 2

5. Results and Discussion

The focus of our study was the descriptive and comprehensive comparison of microarray data
clustering. We applied eight existing cluster methods to both real and simulated data sets. For
each data set, evaluations were conducted using three internal cluster indices (sil, FOM and NOM)
and an external cluster index (aRand). Most of the internal indices can be used to estimate the
number of clusters in a data set, which commonly includes the computation of clustering results
for different numbers of clusters, with the internal indices also varying with the number of clusters
(Handl et al., 2005). We adopted the sil to determine the nuriber of clusters in our study in terms
that this method was often used in other studies (Dudoit and Fridlyand, 2002; Handl et al., 2005)
as a good measure. The sil is known to be preferable over other noise-sensitive methods, given the
noisy nature of data (Handl et al., 2005). We also checked the characteristics of clustering methods
regularly using both internal and external indices, because their results differ with the clustering
method. We first used simulated data sets with four types of data (as described in the Methods
section) where the correct solution was known a priori, to assess the practical ability of traditional
methods to find natural clusters and examine the clustering properties of the used methods. We
then assessed the performance of each clustering method in terms of internal and external measures,
and inspected the appropriateness of each method when it was applied to real gene expression.

5.1. Simulated data analysis

. For the simulated data analysis, Table 5.1 displays the estimated number of clusters for the sil, in
which the number of clusters was selected based on the largest value of sil for values computed from
2 to 10. Table 5.2 compares the results for the FOM, NOM and aRand.

5.1.1. Clustering evaluation in terms of internal measures Overall, all methods successfully iden-
tified the true number of clusters in Sdatal, Sdata3 and Sdatab with weaker overlapping clusters.
For all data types except for Sdatad, SOM and FCM correctly determined the true number of clus-
ters. These results indicate that SOM and FCM exhibit good overall performance in estimating the
true number of clusters from simulated data. PAM and DIANA also exhibits good performance,
although this is somewhat dependent on the degree of overlapping due to heterogeneity between
clusters. In contrast, KM, AHC, BAG and MBC might not be appropriate for identifying the true
number of clusters.

And, one observation is that stronger overlap between clusters result in a lower prediction power for
FOM. Table 5.2 indicates that the values of FOM tended to increase with increasing the degree of
overlap between clusters. In particular, PAM has a good performance for Sdata2 and Sdatal with
strong overlapping clusters. On the other hands, for Sdata6 (with corrleation between variables),
BAG and MBC produced good clustering results in terms of the internal FOM index. BAG and



Comparison of Clustering Method in Microarry Data 99

- Table 5.2. Comparison results with the true clusters when applying the eight clustering methods to simulated data sets.

FCM PAM KM SOM AHC DIANA BAG MBC
FOM
Sdatal 46.58 42.68 42.64 42.20 42.84 28.10 43.22 43.41
Sdata2 72.31 67.37 89.90 90.49 89.90 83.99 83.99 54.62
Sdatad 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94
Sdatad 73.69 49.98 60.49 47.97 60.49 61.61 61.61 71.39
Sdatab 45.49 48.13 37.15 45.91 37.15 48.04 48.04 56.12
Sdata6 23.61 23.29 22.95 20.37 22.73 22.44 15.19 17.99
NOM
Sdatal 0 0 0.16 4] 0 0 0.05 0
Sdata2 0 0 0.17 0 0 0 0.21 0
Sdata3d 0 0 0 0 0 0 4] 0
Sdata4 0 0 0.08 0 0 8] 0.34 0
Sdatab 0 0 0 0 0 0 0.23 0
Sdata6 0 0 0.13 i) 0 0 0.27 0
aRand
Sdatal 1 1 1 0.73 1 (.94 0.98 1
Sdata2 0.58 0.54 0.50 0.35 0.45 0.46 0.47 0.74
Sdata3 1 1 1 1 1 1 1 1
Sdata4 0.30 0.30 0.33 .26 0.21 0.22 0.29 0.28
Sdatab 0.57 0.49 0.57 0.51 0.57 0.60 0.22 0.67
Sdata6 0.92 0.88 0.41 0.79 0.86 0.90 0.79 0.93

KM showed a low consistency from NOM of leave-one-out validation. Therefore, the results from
BAG and KM might depend on the specific genes that are used in the analysis.

5.1.2. Clustering evaluation in terms of external measures The aRand was used to assess the
accuracy of the implemented clustering methods. The aRand preserves information on the consis-
tency of different clustering of the same data, and has been considered a good metric for clustering
evaluations (Milligan and Cooper, 1986; Monti et al., 2003).

As shown in Table 5.2, in the external validation, all the clustering methods except for SOM tended
to exhibit similar performances for Sdatal and Sdata3, which had clusters that overlapped less due
to the small variances. In contrast, for Sdata2 and Sdata4 with strong overlapping clusters, FCM,
PAM and MBC showed a high consistency rate, especially for Sdata6 with heterogeneity between
variables, and FCM, DIANA and MBC outperformed the other methods. FCM and PAM generally
give stable results that were also the best for all data sets. Moreover, it is interesting that PAM
and DIANA - which are conceptually different approaches - exhibit similar performance, while the
performances of SOM and KM differed from that of PAM, despite them using conceptually the
same approach.

5.2. Microarray data analysis

We evaluated the performance of applying the eight predominant traditional clustering methods
to six real data sets. For a comprehensive comparison, we focused on interpreting the clustering
results using two parameters: the class size and the heterogeneity of the data. We searched for
characteristics of the clustering methods using descriptive means on the basis of real cluster struc-
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Table 5.3. Number of clusters from microarray data sets by the sil
Actual FCM PAM KM SOM AHC DIANA BAG MBC

Leuk 3 3 2 3 2 3 2 2 2
Mela 2 2 2 2 2 2 2 2 2
Lymp 3 2 2 2 2 2 2 2 2
Colon 2 4 4 4 4 4 4 2 2
Lung 5 3 2 3 2 2 2 2 2

NCI 8 2 2 2 2 2 2 2 2

Table 5.4. Comparison results corresponding to the known clusters when applying the clustering methods to the six microarray
data sets.

FCM PAM KM SOM AHC DIANA BAG MBC
FOM
Leuk 18.09 19.95 19.09 29.43 19.23 22.66 34.73 68.07
Mela 9.05 8.86 9.05 8.98 10.02 9.05 11.83 23.28
Lymp 17.10 21.76 23.72 18.36 24.33 29.38 31.02 70.61
Colon 33.91 33.91 33.95 33.92 33.75 33.92 58.43 109.35
Lung 3048.1 2960.1 3042.2 2495.1 2828.3 4760.2 2505.1 9300.2
NCI 6.01 5.21 6.22 4.60 6.41 7.31 9.97 57.05
NOM
Leuk 0 0 0.13 0 0 0 0.30 0
Mela 0 0 0 0 0 0 0.16 0
Lymp 0.09 0 0.01 0 0 0 0.08 0
Colon 0 0 0 0 0 0 0.05 0
Lung 0.02 0 0.14 0 0 0 0.34 0
NCI 0.30 0 0.26 0 0 0 0.33 0
aRand
Leuk 0.60 0.60 0.59 0.53 0.65 0.53 0.59 0.63
Mela 0.31 0.33 0.32 0.35 0.31 0.31 0.40 0.31
Lymp 0.41 0.35 0.47 0.35 0.41 0.71 0.69 0.41
Colon 0.49 0.49 0.49 0.47 0.50 0.49 0.53 0.49
Lung 0.57 0.53 0.58 0.36 0.38 0.68 0.39 0.38
NCI 0.39 0.24 0.40 0.21 0.24 0.28 0.25 0.35

tures. For real data, we first selected genes considered useful for clustering, with a high variance in
the expression levels across samples as mentioned in the Methods section (Dudoit and Fridlyand,
2002). Table 5.3 lists the estimated number of clusters by the sil, and Table 5.4 lists the values of
validation indices for the FOM, NOM and aRand for real data sets.

5.2.1. Estimated number of clusters In the Leuk, Mela, Lymp and Colon data sets, the esistence
of three, two, two and three classes that were well known a priori, repectively. For these data
sets, all of the clustering methods evaluated by the sil identified exactly two clusters for the Mela
data set, while all methods misclassified the three clusters for the Lymp data set as two clusters.
Moreover, for Colon data set all clustering methods excepting BAG and MBC, which identified
exactly two clusters, misclassified the actual two clusters as four clusters. For the Leuk data set,
FCM, KM and AHC correctly determined the actual three clusters, whereas the other clustering
methods determined that there were only two clusters. This result is not surprising because many
studies have found only two clusters; corresponding to acute lymphoblastic leukemia(ALL) and
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acute myeloid leukemia(AML), even though three classes corresponding to the ALL T-cell, ALL
B-cell, and AML samples are clearly evident in the correlation matrix. For the Lung and NCI data
sets with large clusters, all clustering method did not find the actual clusters.

5.2.2. Performance of clustering methods based on heterogeneous data FEspecially interesting
results were obtained for the clustering of the Lymp and Colon data sets. As mentioned previously
(Milligan and Cooper, 1986; Lee et ol., 2005), the variability in expression may differ between
clusters. In the Lymp data set, the average expression of follicular lymphoma{FL) and B-cell
chronic lymphocytic leukemia(B-CLL) subclasses has been shown to be much more variable than
that of diffuse large-B-cell lymphoma (DLBCL; Tibshirani et al., 2003).

Therefore, in our analysis both Colon and Lymp data sets could be considered as the examples of
heterogeneous data. In these heterogeneous data sets, most clustering methods (except for BAG and
MBC in the Colon data set) failed to find the actual clusters as shown in Table 5.3. In particular,
when all clustering methods were applied to the Lymp data set, one cluster consisted of FL and
DLBCL and the other consisted of CLL. This result is consistent with that obtained using only
PAM method (Dudeit and Fridlyand, 2002). From this result, we supposed that CLL samples were
obtained from peripheral blood cells, as opposed to lymph-node biopsy specimens for the FL and
DLBCL samples. Moreover, for the Colon data set, the correlation for the most variable genes
suggest the existence of a subclass of tumors (Dudoit and Fridlyand, 2002). Indeed, applying all
the clustering methods to the Colon data set discriminated 44 samples from the tumor groups.
Thus, we would expect to identify at most two classes for this data set.

5.2.3. Performance of clustering methods based on data with large clusters For the lung can-
cer{Lung) and NCI60(NCI) data sets with large classes, all the clustering methods appear to un-
derestimate the number of clusters {Table 5.3). In fact, for these data sets the classes are not
clearly distinguishable. The Lung data set is highly skewed to the sample of a class; that is, the
adenocarcinoma(AD) class includes 139 of all the 203 samples (Table 4.2). Therefore, in the image
of the correlation matrix, only two or three classes tend to cluster together {Table 5.3). Although
the clustering results differ between the methods, the two AD and squamous cell lung carcino-
mas{SQ)/pulmonary carcinoids{COID) classes were identified by MBC and DIANA, and the three
AD, COID, and SQ/normal lung specimens(NL) class were identified by KM and PAM. The per-
formances of KM and PAM differed slightly even though they use a similar clustering approach to
partition the samples. As shown previously (Dudoit and Fridlyand, 2002; Tibshirani et al., 2003),
NCI data set has a complicated structure, in that it includes eight cancer classes, with colon and
leukemia classes exhibiting strong interclass correlations, and each class is very small, which makes
it difficult to distinguish classes. Therefore, when using such complicated data, we should not expect
to identify exactly the known number of clusters, and we also found that the results of clustering
are strongly influenced by the data structures.

5.2.4. Validations of internal and external clusters Table 5.4 lists the evaluation result for the
internal cluster indices(FOM and NOM) and the external cluster index(aRand). First, for the Leuk
and Mela data sets, which have a more distinct cluster structure, FCM, PAM and KM (which use a
partitioning algorithm) showed good performances based on the FOM, with the best performance
being for the aRand. While BAG and MBC are the worst based on the FOM, these two methods
are comparable with the remaining methods based on the aRand. Second, for the Lymp and Colon
data sets, which exhibit a heterogeneous structure between clusters, FCM, PAM and SOM are
superior to other methods based on the FOM, but DIANA, BAG and KM outperformed the other
methods based on the aRand. This reflects that results from assessments of clustering methods differ
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significantly between internal and external cluster validations. Finally, for the Lung and NCI data
sets with large classes, SOM, PAM and AHC could well perform based on the FOM, while DIANA,
KM and FCM are superior to the other methods based on the aRand. Applying PAM to the Lung
data set and MBC to the NCI data set (with the largest classes) resulted in reasonable performance
based on the aRand. On the other hand, the results of BAG and KM clustering were generally
inconsistent, similar to the simulated results based on the NOM. However, for the Lymp and Colon
data sets, BAG and KM clustering methods exhibited relatively high consistency respectively as in
evaluations using the aRand, which suggests that BAG and KM tend to discriminate clusters well
from heterogeneous data set.

5.2.5. Attention and emphasis prior to selecting the clustering method The above comparisons
demonstrate that the performances of the same clustering method in evaluations differ between
the use of internal and external clusters indices in all data set analyses. Thus, special attention is
necessary when a developer is evaluating a novel method and a user is selecting an existing method:
how strong the connectedness of samples will be within clusters, how distinguishable the samples
are from the clusters, what characteristics could be in the data, and how many samples could be
overlapped in cluster. The above factors are considered to some extent even though clustering
method basically uses an unsupervised algorithm. That is, in microarray experiments, researchers
already often have ideas about the various subgroups of interesting expression patterns that are
to be expected for sample clustering of a particular data set. Therefore, careful inspection of the
data could play an important role in choosing the most appropriate clustering method - which is a
common descriptive tool prior to core analysis - in complicated data analyses such as those involving
microarray data.

6. Conclusions

This study compared the eight predominant traditional clustering methods in terms of their abilities
to identify subgroups of samples that express similar patterns. The clustering results differed
greatly with the clustering method that was applied. The choice of the most appropriate method
is often confusing in practical applications, with clear guidelines not yet being available. Omne of
our aims was therefore to present some guidelines for the choice of clustering method favorable for
applying to microarray data. For this purpose, internal and external cluster validation methods
were applied to practical data sets. We analyzed simulated data sets containing different types of
cluster structures, as well as real data sets representing practical scenarios. The comparison results
and our recommendations can be summarized as follows:

o Cluster analysis provides clues to the function of unknown samples based on comparisons
with functions of known coregulated samples (Grotkjaer et al., 2006). Evaluating clustering
using a single validation criterion may not result in the most appropriate clustering method
being selected. Moreover, choosing the best clustering method is problematic due to different
evaluations of the same clustering method yielding different results. This study has shown
that most internal indices suffer from biases with regard to the number of clusters, and they
might also exhibits biases with regard to the shape of the underlying data manifold and the
clustering structure. External indices suffer from biases with respect to the number of clusters,
the distribution of cluster sizes, and the actual number of clusters (Halkidi et al., 2001). A
previous comparative study (Dudoit and Fridlyand, 2002) showed that DIANA generally
produces good results, but this could be misleading given that the performance was assessed
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using only internal validation. Thus, obtaining reliable information from data requires careful
interpretation of clustering results, and the results should possibly also be confirmed by
multiple validation methods incorporating internal and external cluster validations due to
many validation methods exhibiting bias.

e The performance of clustering methods varies significantly between assessments by internal
and external validation. In general, when applied to simulated data sets, SOM, FCM and
PAM perform well in identifying the number of clusters using internal validation. For real
data sets, FCM and PAM perform well compared to other methods with homogeneous data
sets, while FCM, PAM and SOM perform better with heterogeneous data sets. Owverall,
PAM and FCM present similarly good results by internal validation. BAG and MBC always
perform worse for real data sets based on only FOM. In contrast, FCM, PAM and MBC
perform better compared to the other methods by external evaluation based on the aRand.
In particular, BAG and MBC are comparable to other methods for data with small clusters,
with BAG performing especially well with heterogeneous data sets in external validation.
However, care is needed when using FCM and SOM, which require several parameters to be
specified in advance, and this disadvantage restricts their applicability to microarray data
analysis.

e BAG and KM perform better on data with heterogeneity and small classes, in terms of the
external consistency, whereas they are somewhat unstable in clustering data according to the
selected data point or the variables. This might be due to BAG constructing many bootstrap
samples by drawing with replacement from the original data set, and then running KM as
the base method on each resampling set (Leisch, 1999). That is, the centers depend on the
inputted samples, and KM itself find only a local minimum of the error function after many
runs. PAM, which uses a similar partitioning algorithm, can be an appropriate alternative in
that it is more robust in choosing the number of clusters and the initial center of a cluster,
and in assigning the sample to each cluster than KM, particularly when the true number of
clusters is unknown.

e It is not surprising that there is no single choice for the best clustering method. Tt is our view
that the various clustering methods work differently (1) in estimating the correct number of
clusters and (2) in allocating the samples to clusters. Here we recommend incorporating these
two features as a compromise solution: that is, SOM, PAM and FCM appear to be solid and
robust performers under internal validation, whereas DIANA, FCM and PAM perform well
in assigning the samples to clusters.

In fact this study focused to compare traditional clustering methods and thus other novel methods
did not compare. However, according to the aim of research, many other interesting methods can be
applicable to cluster microarray data. For example the tight clustering method is to find a cluster the
most informative, tight and stable clusters of sizes (Tseng and Wong, 2005). In other words, most
traditional clustering algorithms aim to assign all genes into clusters, but tight clustering focuses
to identify the core patterns and the result becomes more interpretable. Also, bi-clustering method
Is conceptual clustering approach within categorical data. This method provides a collection of bi-
clusters, i.e., linked clusters for both objects and attribute value pairs (Pensa and Boulicant, 2005).
These methods could work well in some research with special aim and experimental conditions. The
extensive comparison and review for novel clustering methods may help user to choose appropriate
method to the data.
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On the other hands, it is often the case that biologists have prior ideas of what constitutes a good
choice for the number of clusters, at least approximately. For good clustering, it is essential to not
only have a thorough understanding of the particular tool being used, but also to know the details
of the data gathering process and to have some domain expertise. The more information the user
has about the data at hand, the greater the likelihood of success in assigning its true class structure
(Jain et al., 1999). Despite many difficulties in comparative testing, our results could be useful to
the optimal clustering of microarray data. This study suggests that the most appropriate clustering
method should be selected according to the particular biological goal. Also, this study may present
a good guidence to a non-statician for clustering microarray data under consideration of various
real situation. However, the use of clustering methods to search for matches remains a significant
problem that deserves further investigation.
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