Effect of Water Temperature on Ammonia Excretion of Juvenile Starry Flounder Platichthys stellatus

강도다리 Platichthys stellatus 치어의 암모니아 배설에 미치는 수온의 영향

  • Oh, Sung-Yong (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Jang, Yo-Soon (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Noh, Choong Hwan (East Sea Environment Research Department, Korea Ocean Research & Development Institute) ;
  • Choi, Hee Jung (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Myoung, Jung-Goo (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Kim, Chong-Kwan (Marine Living Resources Research Department, Korea Ocean Research & Development Institute)
  • 오승용 (한국해양연구원 해양생물자원연구부) ;
  • 장요순 (한국해양연구원 해양생물자원연구부) ;
  • 노충환 (한국해양연구원 동해특성연구부) ;
  • 최희정 (한국해양연구원 해양생물자원연구부) ;
  • 명정구 (한국해양연구원 해양생물자원연구부) ;
  • 김종관 (한국해양연구원 해양생물자원연구부)
  • Received : 2008.10.07
  • Accepted : 2009.03.02
  • Published : 2009.03.31

Abstract

The effect of water temperature on fasting and post-prandial total ammonia excretion (TAN) of the starry flounder Platichthys stellatus (mean body weigh : $42.4{\pm}3.4g$) was studied. The fasting and post-prandial TAN excretions were measured under three different water temperatures (10, 15 and $20^{\circ}C$) for 24 hours using a recirculating system. In each treatment three replicates were set up and total 45 fish were used. Fish were taken to the indoor aquarium, acclimated over 10 days at three temperatures, and transferred to TAN measuring system for measurements of TAN excretion at the same temperatures. After 3 days of starvation, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed to satiation level with a commercial diet containing 50.2% crude protein for 7 days, two times daily 08 : 00 and 16 : 00 h. The fasting and postprandial TAN excretion increased with increased water temperature (p<0.05). Mean fasting TAN excretion rates at 10, 15 and $20^{\circ}C$ were 10.9, 11.2 and $12.2mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. The value at $20^{\circ}C$ was higher than those at 10 and $15^{\circ}C$ (p<0.05), but there was no significant difference between $10^{\circ}C$ and $15^{\circ}C$. Mean post-prandial TAN excretion rates at 10, 15 and $20^{\circ}C$ were 33.0, 43.4 and $55.3mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. Two peaks of post-prandial TAN excretions were observed, and the second peak was always greater than the first. The post-prandial TAN excretion rate reached to the maximum after 10 hours from the first feeding at $10^{\circ}C$($45.3mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), $15^{\circ}C$ ($64.5mg\;TAN\;kg\;fish^{-1}\;h^{-1}$) and $20^{\circ}C$ ($83.2mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), respectively. The TAN loss for ingested nitrogen at $20^{\circ}C$ (48.8%) was higher than that for $10^{\circ}C$ (43.0%) and $15^{\circ}C$ (45.7%). This study provides empirical data for estimating ammonia excretion and managing culture management of starry flounder under given temperatures.

강도다리 치어(평균 $42.4{\pm}3.4g$, 총 45마리)의 수온(10, 15 그리고 $20^{\circ}C$)에 따른 절식과 식후 총암모니아성 질소 (total ammonia nitrogen, TAN) 배설을 조사하였다. 절식 및 식후 TAN 배설은 순환여과식 시스템 내에서 24시간 동안 3반복으로 측정하였다. 절식 TAN 배설은 실험 수온에 10일 이상 순치한 후 암모니아 측정 시스템에 옮겨 3일간 절식 후 측정하였고, 식후 TAN 배설은 상품 사료(단백질 함량 50.2%)를 하루에 두 번(08 : 00, 16 : 00 h), 7일간 공급한 뒤 실시하였다. 절식과 사료 공급에 따른 TAN 배설은 수온 상승에 따라 증가하였다(p<0.05). 절식 시 수온 10, 15 그리고 $20^{\circ}C$에서 시간당 평균 TAN 배설률은 각각 10.9, 11.2 그리고 $12.2mg\;TAN\;kg\;fish^{-1}\;h^{-1}$이었고, $20^{\circ}C$$10^{\circ}C$$15^{\circ}C$에 비해 유의적으로 높았다(p<0.05). 식후 시간당 평균 TAN 배설률의 경우 수온 10, 15 그리고 $20^{\circ}C$에서 각각 33.0, 43.4 그리고 $55.3mg\;TAN\;kg\;fish^{-1}\;h^{-1}$으로 나타났다. 두 번의 peak TAN 배설률이 나타났으며, 두 번째 peak가 첫 번째보다 높았다. 최대 TAN 배설률은 최초 사료 공급 10시간 후 나타났으며, 수온 10, 15 그리고 $20^{\circ}C$에서 각각 45.3, 64.5 그리고 $83.2mg\;TAN\;kg\;fish^{-1}\;h^{-1}$이었다. 수온 10, 15 그리고 $20^{\circ}C$에서 섭취한 질소에 대한 TAN 배설 비율은 각각 43.0, 45.7 그리고 48.8%로 나타나 $20^{\circ}C$$10^{\circ}C$$15^{\circ}C$에 비해 유의적으로 높았다(p<0.05). 이상의 결과는 강도다리 치어의 수온에 따른 암모니아 배설을 추정하고 수질관리 및 사육관리를 위한 실험적 자료를 제공한다.

Keywords

Acknowledgement

Supported by : 한국해양연구원

References

  1. 변순규∙정민환∙이종하∙이배익∙구학동∙박상언∙김이청∙장영진. 2008. 수온에 따른 강도다리 Platichthys stellatus의 산소소비 리듬. 한국수산학회지, 41: 113-118. https://doi.org/10.5657/kfas.2008.41.2.113
  2. 오승용∙조재윤. 2005. 나일틸라피아의 암모니아 배설에 미치는 어체중과 사료 내 단백질 함량의 영향. 한국양식학회지, 18: 122-129.
  3. 임한규∙변순규∙이종하∙박상언∙김이청∙한형균∙민병화∙이배익. 2007. 실내 사육한 강도다리 Platichthys stellatus의 성성숙과 생식주기. 한국양식학회지, 20: 212-218.
  4. 임한규∙안철민∙손맹현∙박민우∙김응오∙변순규. 2006. 희석액과 보존온도에 따른 강도다리(Platichthys stellatus) 정자의 냉장보존 효과. 한국양식학회지, 19: 47-51.
  5. Beamish, F.W.H. and A. Tandler. 1990. Ambient ammonia, diet and growth in lake trout. Aquat. Toxicol., 17: 155-166. https://doi.org/10.1016/0166-445X(90)90028-N
  6. Beamish, F.W.H. and E. Thomas. 1984. Effects of dietary protein and lipid on nitrogen losses in rainbow trout, Salmo gairdneri. Aquaculture, 41: 359-371. https://doi.org/10.1016/0044-8486(84)90203-5
  7. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. In: Hoar, W.H., Randall, D.J. and Brett, J.R. (eds.), Bioenergetics and Growth. Fish Physiology. vol. 8. Academic Press, New York, pp. 279-352.
  8. Cai, Y. and R.C. Summerfelt. 1992. Effects of temperature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture, 104: 127-138. https://doi.org/10.1016/0044-8486(92)90143-9
  9. Cui, Y. and R.J. Wootton. 1988. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus : The effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion. J. Fish Biol., 33: 431-444. https://doi.org/10.1111/j.1095-8649.1988.tb05484.x
  10. Dosdat, A., F. Servais, R. Metailler, C. Huelvan and E. Desbruyeres. 1996. Comparison of nitrogen losses in five teleost fish species. Aquaculture, 141: 107-127. https://doi.org/10.1016/0044-8486(95)01209-5
  11. Forsberg, J.A. and R.C. Summerfelt. 1992. Effects of temperature on dial ammonia excretion of fingerling walleye. Aquaculture, 102: 115-126. https://doi.org/10.1016/0044-8486(92)90294-U
  12. Handy, R.D. and M.G. Poxton. 1993. Nitrogen pollution in mariculture : toxicity and excretion of nitrogenous compounds by marine fish. Rev. Fish Biol. Fish., 3: 205-241. https://doi.org/10.1007/BF00043929
  13. Iwata, K. 1970. Relationship between food and growth in young crucian carps (Carassius auratus cuvieri), as determined by the nitrogen balance. Jpn. J. Limnol., 31: 129-151. https://doi.org/10.3739/rikusui.31.129
  14. Jobling, M. 1981. Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L. J. Fish Biol., 18: 87-96. https://doi.org/10.1111/j.1095-8649.1981.tb03763.x
  15. Kaushik, S.J. 1980. Influence of nutritional status on the daily patterns of nitrogen excretion in the carp (Cyprinus carpio L.) and the rainbow trout (Salmo gairdneri R.). Reprod., Nutr. Dev., 20: 1751-1765. https://doi.org/10.1051/rnd:19801002
  16. Kaushik, S.J. and E.F. Gomes. 1988. Effects of frequency of feeding on nitrogen and energy balance in rainbow trout under maintenance conditions. Aquaculture, 73: 207-216. https://doi.org/10.1016/0044-8486(88)90055-5
  17. Kikuchi, K., T. Sato, N. Iwata, I. Sakaguchi and Y. Deguchi. 1995. Effects of temperature on nitrogenous excretion of Japanese flounder. Fish. Sci., 61: 604-607. https://doi.org/10.2331/fishsci.61.604
  18. Leung, K.M.Y., J.C.W. Chu and R.S.S. Wu. 1999. Effects of body weight, water temperature and ration size on ammonia excretion by the areolated grouper (Epinephelus areolatus) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture, 170: 215-227. https://doi.org/10.1016/S0044-8486(98)00404-9
  19. Lied, E. and B. Braaten. 1984. The effect of feeding and starving and different ratios of protein-energy to total-energy in the feed on the excretion of ammonia in the Atlantic cod (Gadus morhua). Comp. Biochem. Physiol., 78: 49-52. https://doi.org/10.1016/0300-9629(84)90090-2
  20. Meade, J.W. 1985. Allowable ammonia for fish culture. Prog. Fish- Cult., 47: 135-145. https://doi.org/10.1577/1548-8640(1985)47<135:AAFFC>2.0.CO;2
  21. Porter, C.B., M.D. Krom, M.G. Robbins, L. Brickell and A. Davidson. 1987. Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture, 66: 287-297. https://doi.org/10.1016/0044-8486(87)90114-1
  22. Strickland, J.D. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Bull. Fish. Res. Bd. Can., 167: 310 pp.
  23. Storer, J.H. 1967. Starvation and the effects of cortisol in the goldfish (Carassius auratus L.). Comp. Biochem. Physiol., 20: 939-948. https://doi.org/10.1016/0010-406X(67)90065-5
  24. Sumagaysay, N.S. 2003. Nitrogen and phosphorus digestibility and excretion of different-sized groups of milkfish (Chanos chanos Forsskal) fed formulated and natural food-based diets. Aquacult. Res., 34: 407-418. https://doi.org/10.1046/j.1365-2109.2003.00824.x
  25. Tanaka, Y. and S. Kadowaki. 1995. Kinetics of nitrogen excretion by cultured flounder Paralichthys olivaceus. J. World Aquacult. Soc., 26: 188-193. https://doi.org/10.1111/j.1749-7345.1995.tb00243.x
  26. Wu, R.S.S. 1995. The environmental impact of marine fish culture: towards a sustainable future. Mar. Poll. Bull., 31: 159-166. https://doi.org/10.1016/0025-326X(95)00100-2