• Title/Summary/Keyword: ammonia excretion rate

Search Result 30, Processing Time 0.029 seconds

Effect of Vibration Stress on the Oxygen Consumption, Ammonia Excretion and Blood Characteristics of the Cultured Eel, Anguilla japonica (뱀장어, Anguilla japonica의 산소소비, 암모니아 배설 및 혈액성상에 미치는 진동의 영향)

  • 이정열;허준욱
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.262-267
    • /
    • 2004
  • Physiological responses (oxygen consumption, ammonia excretion, hemoglobin, red blood cell and white blood cell) of cultured eel, Anguilla japonica to vibration stress were studied in an indoor experimental system. Vibration of 76-93 dB (V) from an electric vibrator was provided in 15-minute intervals during daytime (0800-1800) over a ten day period. Oxygen consumption before the beginning of the experiment (0 day) was 83.9 mg $O_2$$.$kg$^{-1}$ ㆍhr$^{-1}$ . After 1, 5 and 10 days of stress respiration rate decreased by 37.5, 53.7 and 70.5%, respectively. Ammonia excretion showed a similar pattern to that of oxygen consumption. Ammonia excretion decreased by 80.1 % following 10 days of vibration stress. Blood hemoglobin concentration also decreased at 1, 3 and 10th day were 29.4% on day 1,83.9% on day 3 and 87.9% by day 10, while red blood cell counts at day 1 and day 10th were 59.8% and 84.7% lower than initial counts, respectively. The white blood cell count increased by 191.2% at day 7, dropping to 41.5% at day 10. Physiological activity was reduced by 50% following 3.4 days of vibration stress.

Effects of Water Temperature and Ambient Ammonia Concentration on Oxygen Consumption and Ammonia Excretion of Greenling Hexagrammos otakii Jordan et Stalks (환경수의 수온과 암모니아 농도 변화에 따른 쥐노래미(Hexagrammos otakii Jordan et Starks) 육성어의 산소소비와 암모니아 배설)

  • Kim, You-Hee;Kim, Pyong-Kih;Kim, Hyeon-Ju;Jo, Jae-Yoon;Han, Won-Min;Park, Jeong-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.373-379
    • /
    • 2009
  • This study investigated oxygen consumption rate (OCR), $Q_{10}$ coefficient and ammonia excretion rate of the greenling, Hexagrammos otakii Jordan et Starks with the average body weight of 250 g in a semi-recirculated respiratory measuring system. The experiment was done under three different water temperatures (10, 15, $20^{\circ}C$) and five different ambient ammonia concentrations (0, 2.5, 5, 10, 20 mg/L). As the water temperature and ambient ammonia concentration increased the OCR has significantly increased (P<0.05). Given experimental conditions, the OCR of greenling were $50.8{\sim}159.4\;mg\;O_2\;kg^{-1}\;hr^{-1}$ and the relationship of water temperature (T) and ambient ammonia concentration (C) on the OCR were following: OCR = 41.3 - 1.87T - 7.38C + $0.463T^2$ + $0.66lC^2$ + 0.642TC - $0.011T^3$ - $0.010C^2$ - $0.031TC^2$ - $0.001T^2$C ($r^2$= 0.9226). $Q_{10}$ coefficients were $1.88{\sim}3.50$ for $10^{\circ}C$ to $15^{\circ}C$, $1.03{\sim}2.73$ for $15^{\circ}C$ to $20^{\circ}C$ and $1.40{\sim}1.90$ for $10^{\circ}C$ to $20^{\circ}C$, respectively. In general, the ammonia excretion rate tended to increase with increasing of the water temperature within normal ambient ammonia concentration. However, interestingly, it was observed that ammonia was absorbed rather than excreted above the ambient ammonia concentration of $2.5\;mg\;L^{-1}$, regardless of the water temperature. Thus, the largest ammonia absorption rate (AAR) was obserbed at the level of $98.4\;mg\;TAN\;kg^{-1}\;hr^{-1}$. The relationship ambient ammonia concentration (C) on AAR was following: Y = 1.61 + $10.9X^{0.7}$ ($r^2$ = 0.889).

Effects of Temperature and Stocking Density on the Ammonia Excretion Rate of Red Seabream, Pagrus major

  • Harwanto, Dicky;Oh, Sung-Yong;Kim, Chong-Kwan;Gultom, Victor David Nico;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • An experiment was conducted to investigate the effects of temperature and stocking density on daily patterns and rates of total ammonia nitrogen (TAN) excretion in juvenile red seabream Pagrus major (mean body weight: 29.0 g) under fasting and feeding conditions. Fish were acclimated over 7 days under four different temperatures (10, 15, 20, and $25^{\circ}C$) and at two different densities (5.5 and $11.0\;kg\;m^{-3}$). Each treatment had three replicates and a total of 216 fish were used. After 72 hours starvation, endogenous TAN excretion was measured for each temperature and density. To investigate exogenous TAN excretion, fish were handfed a commercial diet containing 51.6% crude protein twice a day for 7 days, at 08:00 and 16:00. Water was sampled from both inlets and outlets of chambers every 2 hours over a 24 hour period. Both endogenous and exogenous TAN excretion increased with increases in temperature and density (P<0.05). Mean daily endogenous TAN excretion rates at 10, 15, 20, and $25^{\circ}C$ were 88.8, 101.1, 125.0, and $143.3\;mg\;TAN\;kg^{-1}\;d^{-1}$ at low density, and 105.2, 119.2, 141.5, and $168.8\;mg\;TAN\;kg^{-1}\;d^{-1}$ at high density, respectively. Mean daily exogenous TAN excretion rates at 10, 15, 20, and $25^{\circ}C$ were 343.5, 403.7, 535.7, and $601.7\;mg\;TAN\;kg^{-1}\;d^{-1}$ at low density, and 391.9, 479.7, 611.9, and $683.4\;mg\;TAN\;kg^{-1}\;d^{-1}$ at high density, respectively. The exogenous TAN excretion rate peaked 10~12 hours after the first feeding under all temperatures and densities. The TAN loss for ingested nitrogen increased with increases in temperature and density (P<0.05), ranging from 27.9 to 50.1% at low density and 31.7 to 56.9% at high density. This study provides empirical data for estimating ammonia excretion and managing the culture of red seabream under the given temperatures and densities.

Effect of Water Temperature on Ammonia Excretion of Juvenile Dark-banded Rockfish Sebastes inermis (볼락 Sebastes inermis 치어의 암모니아 배설에 미치는 수온의 영향)

  • Oh, Sung-Yong;Choi, Sang-Jun
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • A study was carried out to investigate the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile dark-banded rockfish Sebastes inermis (mean body weight: $14.8{\pm}0.3g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (15, 20 and $25^{\circ}C$). After 72 hours of starvation, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 47.7% crude protein for 7 days, two times daily at 09:00 and 17:00 hr. Water was sampled from both the inlet and outlet of each chamber every 2 hrs over a 24 hr period. Both fasting and post-prandial TAN excretion increased with increase in water temperature (P<0.05). Mean fasting TAN excretion rates at 15, 20 and $25^{\circ}C$ were 8.1, 9.0 and 9.2 mg TAN kg $fish^{-1}h^{-1}$, respectively. The value of $15^{\circ}C$ was lower than those of 20 and $25^{\circ}C$ (P<0.05), but there was no significant difference between $20^{\circ}C$ and $25^{\circ}C$ (P>0.05). Mean post-prandial TAN excretion rates at 15, 20 and $25^{\circ}C$ were 20.1, 22.9 and 23.4 mg TAN kg $fish^{-1}h^{-1}$, respectively. A peak post-prandial TAN excretion rate occurred after 12 hrs from the first feeding at $15^{\circ}C$ (mean 28.7 mg TAN kg $fish^{-1}h^{-1}$), $20^{\circ}C$ (33.7 mg TAN kg $fish^{-1}h{-1}$) and $25^{\circ}C$ (36.8 mg TAN kg $fish^{-1}h{-1}$), respectively. The TAN loss for ingested nitrogen at $15^{\circ}C$ (36.2%) was lower than that of $20^{\circ}C$ (40.8%) and $25^{\circ}C$ (41.7%). Based on overall results, water temperature exerts a profound influence on the nitrogen metabolism of juvenile dark-banded rockfish.

A Comparative Study on the Nitrogen Metabolism of Symbiotic Chlorella from Paramecium bursaria with Chlorella ellipsoidea (Paramecium bursaria와 공생하는 Chlorella와 Chlorella ellipsoidea의 질소대사에 관한 비교연구)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.29 no.3
    • /
    • pp.145-156
    • /
    • 1986
  • The excretion of ammonia and glutamine synthetase activities were measured in aposymbiotic Paramecium and symbiotic Paramecium. The uptake of nitrate and ammonia, and specific enzyme activities of nitrate reductase, glutamate dehydrogenase and glutamine synthetase were investigated in symbiotic Chlorella from Paramecium bursaria and Chlorella ellipsoidea. The ammonia concentration in the culture media of aposymbiotic Paramecium was increased according to the growth of the Paramecium but it was not changed in symbiotic Paramecium. Nitrate, the major nitrogen source, was taken up at a rate of 0.635 nmol/ 106 Chlorella/hr in Chlorella ellipsoidea. Most of ammonia was assimilated to glutamine by glutamine synthetase, of which acitivty was 1,467 $\mu$mol/mg protein/min in Chlorella elliposidea. Contrary to Chlorella ellipsoidea, ammonia and glutamine transported from the Paramecium were the nitrogen source of symbiotic Chlorella and ammonia was taken up at a rate of 3.854 nmo./106 Chlorella/hr into synmbiotic Chlorella. Most of ammonia were assimilated to glutamate by glutamate dehydrogenase in symbiotic Chlorella. The glutamate dehydrogenase (GDH/NADH) activity was 0.851 $\mu$mol/mg protein/min.

  • PDF

Effects of Body Weight and Dietary Protein Level on Ammonia Excretion by the Nile tilapia Oreochromis niloticus (나일틸라피아의 암모니아 배설에 미치는 어체중과 사료 내 단백질 함량의 영향)

  • Oh, Sung-Yong;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • Ammonia is the major limiting factor in intensive aquaculture production systems. Therefore, quantification of ammonia excretion is important for the water quality management in aquaculture systems. Ammonia excretion is known to be affected by many factors such as body weight and dietary protein level (DPL). In this study, experiments were carried out to investigate the effects of body weight and DPLs on the rates of ammonia excretion of Nile tilapia Oreochromis niloticus. Three sizes of fishes (mean initial weight; 4.8 g,42.7 g and 176.8 g) were fed each of two dietary protein levels (30.5% and 35.5%). Daily feeding levels for the three fish sizes of 4.8 g, 42.7 g and 176.8 g were 6%, 3%, and 1.5% body weight per day, respectively. Each group of fish was stocked in a 17.1-L aquarium and all treatments were triplicated. Following feeding, the weight-specific ammonia excretion rate of O. niloticus increased, peaked at 4 to 8 h, and returned to pre-feeding levels within 24 h. Total ammonia nitrogen (TAN) excretion.ate per unit weight decreased with the increase of fish weight for each diet (P<0.05). The TAN excretion rate increased with increasing dietary protein content for each fish size (P<0.05). TAN excretion rates (Y) for each diet with different fish weights were described by the following equations: low DPL diet (30.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=955.69-147.12\;lnX\;(r^2=0.95)$, high DPL diet (35.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=1362.41-209.79\;lnX\;(r^2=0.99)$. Where: X=body weight (g wet wt.). The TAN excretion rates ranged 28.5%-37.1% of the total nitrogen ingested for the low DPL diet (30.5%) and 37.4-38.5% for the high DPL diet (35.5%). Total nitrogen losses of fish fed the high DPL diet $(35.5%;\;0.26\sim0.91g\;kg^{-1}\;d^{-1})$ were higher than those fed the low DPL diet $(30.5%;\;0.22\sim0.68g\;kg^{-1}\;d^{-1})$. The losses decreased per kg of fish as fish size increased. Results will provide valuable information fer water quality management and culture of Nile tilapia in recirculating aquaculture systems.

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF

The Evaluation of Lidocaine-hydrochloride as Anaesthetic for the Transportation of Rhynchocypris steindachneri (버들개, Rhynchocypris steindachneri 운송을 위한 마취제 lidocaine-hydrochloride의 평가)

  • PARK In-Seok;LIM Chel Ho;CHOI Moon Sul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.785-790
    • /
    • 1998
  • The experimental transportation of Rhynchocypris steindachneri was carried out to study the effects of lidocaine-hydrochloride on water parameters. The dissolved oxygen, ventilation rate, ammonia nitrogen, and pH of control group, sham control group, and lidocaine-hydrochloride treated groups of 2,5 ppm, 5 ppm, 10 ppm and 20 ppm at time of 30 min, 60 min, 90 min, 120 min, 240 min and 360 min after elapsed from treatment were tested. During the experiment time it was found that lidocaine-hydrochloride treated groups were most effective, followed by sham control and control, in decreasing the oxygen consumption and the excretion of ammonia by the fish. There were lidocaine-hydrochloride dose-related decrease in oxygen consumption and the excretion of ammonia. Decreasing in pH value of lidocaine-hydrochloride groups and sham control group was much more higher than that of control group. These results reveal lidocaine-hydrochloride is effective as sedative for transportation mixture in R. steindachneri.

  • PDF

Effect of Water Temperature on Ammonia Excretion of Juvenile Pacific Cod Gadus macrocephalus (대구 Gadus macrocephalus 치어의 암모니아 배설에 미치는 수온의 영향)

  • Oh, Sung-Yong;Park, Heung-Sik;Noh, Choong-Hwan
    • Korean Journal of Ichthyology
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2010
  • A study was carried out to examine the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile Pacific cod Gadus macrocephalus (mean body weight: $36.5{\pm}0.8\;g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (9, 11 and $13^{\circ}C$), and transferred to TAN measuring system under each water-temperature condition. After 72 hours of starving, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 40.6% crude protein for 7 days, two times daily at 08:00 and 16:00 h. Water was sampled from both the inlet and outlet of the fish chamber every 2 h over a 24-h period. Both fasting and post-prandial TAN excretion increased with increased water temperatures (p<0.05). Mean fasting TAN excretion rates at 9, 11 and $13^{\circ}C$ were 9.3, 11.0 and $11.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. The value of $9^{\circ}C$ was lower than those of 11 and $13^{\circ}C$ (p<0.05), but there was no significant difference between $11^{\circ}C$ and $13^{\circ}C$. Mean post-prandial TAN excretion rates at 9, 11 and $13^{\circ}C$ were 23.0, 31.6 and $45.4\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. A peak value of post-prandial TAN excretion rate occurred after 2 h from each feeding, and the second value is always higher than the first value. Maximum post-prandial TAN excretion rate occurred after 10 h from the first feeding at $9^{\circ}C$ (mean $38.0\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), $11^{\circ}C$ ($52.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$) and $13^{\circ}C$ ($77.5\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), respectively. The TAN loss for ingested nitrogen at $9^{\circ}C$ (43.9%) was lower than those of $11^{\circ}C$ (46.4%) and $13^{\circ}C$ (48.4%). The overall results indicate that water temperature exhibits a significant effect on the nitrogen excretion of juvenile Pacific cod.

The Optimum Salinity and the Effects of the Rapid Salinity Change on Oxygen Consumption and Nitrogen Excretion in River Puffer, Takifugu obscrus (급격한 염분변화에 따른 황복의 산소소비와 질소배설)

  • Lee Jeong-Yeol;Kim Deock-Bae
    • Journal of Aquaculture
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The optimum salinity and the effects of rapid salinity change on oxygen consumption and ammonia nitrogen excretion were examined in River Puffer Takifugu obscrus (total length 9.5$\pm$0.9 cm, total weight 18.7$\pm$5.4 g). Fish examined at the different transfer medium salinity (2, 12, 22 and 32 psu) after 2 months of acclimation period at each salinities. The routine metabolic rates of River puffer are shown as parabola equation, $Y=-0.0873X^2+0.6384X-0.690$ for oxygen consumption and $Y=-2.1667X^2+7.1672X+31.999$ for ammonia nitrogen excretion with the salinity medium at 2, 12. 22 and 32 psu. The oxygen consumption and ammonia nitrogen excretion of River puffer trans-ferred to the low salinity medium (2 and 12 psu) showed significantly difference in each salinities rearing groups than to salinity of 22 and 32 psu. Fish has a diurnal rhythm in relate to feeding, it was showed that the peak of oxygen consumption appeared at 3 hours after feeding and the ammonia nitrogen excretion rate reached maximum 4 hours after feeding. These results may indicate that the optimum salinity for rearing of River puffer is 22 psu based on growth and feed conversion ratio. The rapid change of medium salinity had no effects on the oxygen consumption and nitrogen excretion in River puffer based on this experiment.