퀴놀린-페놀 혼합용액의 습식산화

Wet Co-Oxidation of Quinoline and Phenol

  • 류승훈 (경희대학교 환경응용화학대학) ;
  • 윤왕래 (한국에너지기술연구원 수소에너지연구센터) ;
  • 서일순 (건국대학교 화학공학과)
  • Ryu, Sung Hun (College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Yoon, Wang-Lai (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Suh, Il-Soon (Department of Chemical Engineering, Konkuk University)
  • 투고 : 2009.03.08
  • 심사 : 2009.04.26
  • 발행 : 2009.10.10

초록

퀴놀린 습식산화는 $225^{\circ}C$$250^{\circ}C$에서 수행되었다. $250^{\circ}C$에서의 습식산화에서 퀴놀린은 30 min 내에 완전히 분해되었으며 총 유기탄소(TOC)는 120 min 내에 63% 감소하였다. 반면에 $225^{\circ}C$에서의 습식산화에서는 TOC는 240 min 동안 13% 감소하였다. 퀴놀린 산화 중 니코틴산과 초산이 주 중간생성물로 생성되었다. 균일촉매 $CuSO_4$ 또는 쉽게 산화되는 페놀을 첨가하여 온화한 반응조건인 $200^{\circ}C$에서의 퀴놀린 습식산화도 수행하였다. $CuSO_4$를 0.20 g/L 사용한 촉매 습식산화는 $250^{\circ}C$ 습식산화에서와 비슷한 퀴놀린 및 TOC 제거속도를 보였다. $200^{\circ}C$에서의 퀴놀린과 페놀 혼합물 습식산화에서는 퀴놀린과 페놀의 분해 개시에 필요한 자유라디칼이 생성되는 유도기간이 나타났다. 주어진 퀴놀린 초기농도에서 페놀 초기농도를 증가시킴에 따라, 퀴놀린과 페놀 분해를 위한 유도기간은 짧아졌고 습식산화 180 min 동안의 TOC 감소율은 60%에서 75%까지 증가하였다. 유도기간의 감소율은 퀴놀린에 대한 페놀 초기농도비를 증가시킴에 따라 감소하였다. 반면에 퀴놀린과 페놀 혼합물 습식산화에서의 페놀분해는 페놀 습식산화에서 보다 긴 유도기간을 필요로 하였고 서서히 진행되었다.

Wet oxidations (WO) of quinoline in aqueous solution were carried out at $225^{\circ}C$ and $250^{\circ}C$. In the WO at $250^{\circ}C$, quinoline was degraded completely within 30 min and the reduction in total organic carbon (TOC) of 63% was achieved during 120 min. However, the rate of the reduction in TOC was only 13% within 240 min during the WO at $225^{\circ}C$. Nicotinic and acetic acid were found to be main intermediates formed during the oxidation of quinoline. With the addition of the homogeneous catalyst $CuSO_4$ or more easily oxidizable phenol, WOs of quinoline were also carried out under moderate conditions at $200^{\circ}C$. The catalytic WO with $CuSO_4$ of 0.20 g/L showed the destruction rates of quinoline and TOC comparable to those in the WO at $250^{\circ}C$. The WOs of quinoline-phenol mixture exhibited induction periods to degrade quinoline and phenol during which free radicals were produced to initiate WOs. With increasing initial concentrations of phenol at a given initial concentration of quinoline, the induction periods in the destructions of quinoline and phenol became shorter and the reduction in TOC increased from 60% to 75% during 180 min of the WOs. The reduction rate of an induction period decreased as increasing the initial concentration ratio of phenol to quinoline. On the other hand, phenol degradation in the WOs of quinoline-phenol mixtures required a longer induction period and proceeded slower compared to the case of the WO of phenol.

키워드

과제정보

연구 과제 주관 기관 : 건국대학교

참고문헌

  1. V. S. Mishra, V. V. Mahajani, and J. B. Joshi, Ind. Eng. Chem. Res., 34, 2 (1995) https://doi.org/10.1021/ie00040a001
  2. I.-S. Suh and W.-L. Yoon, Chem. Ind. Technol., 14, 566 (1996)
  3. F. Luck, Catalysis Today, 53, 81 (1999) https://doi.org/10.1016/S0920-5861(99)00112-1
  4. R. Miethling, V. Hecht, and W.-D. Deckwer, Biotechnol. Bioeng., 42, 589 (1993) https://doi.org/10.1002/bit.260420506
  5. A. B. Thomsen, Wat. Res., 32, 136 (1998) https://doi.org/10.1016/S0043-1354(97)00200-5
  6. F. J. Rivas, S. T. Kolaczkowski, F. J. Beltran, and D. B. McLurgh, Chem. Eng. Sci., 53, 2575 (1998) https://doi.org/10.1016/S0009-2509(98)00060-8
  7. F. J. Rivas, S. T. Kolaczkowski, F. J. Beltran, and D. B. McLurgh, J. Chem. Technol. Biotechnol., 74, 390 (1999) https://doi.org/10.1002/(SICI)1097-4660(199905)74:5<390::AID-JCTB64>3.0.CO;2-G
  8. R. S. Willms, D. D. Reibe, D. M. Wetzel, and D. P. Harrison, Ind. Eng. Chem. Res., 26, 606 (1987) https://doi.org/10.1021/ie00063a031
  9. V. S. Mishra, J. B. Joshi, and V. V. Mahajani, Wat. Res., 28, 1601 (1994) https://doi.org/10.1016/0043-1354(94)90227-5
  10. M. J. Birchmeier, Jr., C. G. Hill, C. J. Houtman, R. H. Atalla, and I. A. Weinstock, Ind. Eng. Chem. Res., 39, 55 (2000) https://doi.org/10.1021/ie990149n
  11. J. Vicente, R. Rosal, and M. Diaz, Ind. Eng. Chem. Res., 41, 46 (2002) https://doi.org/10.1021/ie010130w
  12. S.-S. Kwon, H.-M. Moon, Y.-H. Lee, Y. Yu, W.-L. Yoon, and I.-S. Suh, Korean J. Biotechnol. Bioeng., 23, 245 (2008)
  13. R. V. Shende and V. V. Mahajani, Ind. Eng. Chem. Res., 36, 4809 (1997) https://doi.org/10.1021/ie970048u
  14. D. Mantzavinos, R. Hellenbrand, A. G. Livingston, and I. S. Metcalfe, Wat. Sci. Tech., 35, 119 (1997)
  15. I.-S. Suh, S. H. Ryu, and W.-L. Yoon, Korean Chem. Eng. Res., 47, 292 (2009)
  16. H. R. Devlin and I. J. Harris, Ind. Eng. Chem. Fundam., 23, 387 (1984) https://doi.org/10.1021/i100016a002
  17. J. P. Scott and D. F. Ollis, Environ. Progress, 14, 88 (1995) https://doi.org/10.1002/ep.670140212
  18. H.-J. Choi, S.-H. Lee, Y. Yu, W.-L. Yoon, and I.-S. Suh, Korean J. Biotechnol. Bioeng., 22, 244 (2007)