DOI QR코드

DOI QR Code

Leukotriene B4 Regulates Proliferation and Differentiation of Cultured Rat Myoblasts via the BLT1 Pathway

  • Sun, Ru (Institute of Genetics and Cytology, Northeast Normal University) ;
  • Ba, Xueqing (Institute of Genetics and Cytology, Northeast Normal University) ;
  • Cui, Lingling (Institute of Genetics and Cytology, Northeast Normal University) ;
  • Xue, Yan (Institute of Genetics and Cytology, Northeast Normal University) ;
  • Zeng, Xianlu (Institute of Genetics and Cytology, Northeast Normal University)
  • Received : 2008.09.29
  • Accepted : 2009.01.19
  • Published : 2009.04.30

Abstract

Skeletal muscle regeneration is a highly orchestrated process initiated by activation of adult muscle satellite cells. Upon muscle injury, the inflammatory process is always accompanied by muscle regeneration. Leukotriene $B_4$ is one of the essential inflammatory mediators. We isolated and cultured primary satellite cells. RT-PCR showed that myoblasts expressed mRNA for $LTB_4$ receptors BLT1 and BLT2, and $LTB_4$ promoted myoblast proliferation and fusion. Quantitative real-time PCR and immunoblotting showed that $LTB_4$ treatment expedited the expression process of differentiation markers MyoD and M-cadherin. U-75302, a specific BLT1 inhibitor, but not LY2552833, a specific BLT2 inhibitor, blocked proliferation and differentiation of myoblasts induced by $LTB_4$, which implies the involvement of the BLT1 pathway. Overall, the data suggest that $LTB_4$ contributes to muscle regeneration by accelerating proliferation and differentiation of satellite cells.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, NENU

References

  1. Arnold, H.H., and Winter, B. (1998). Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8, 539-544 https://doi.org/10.1016/S0959-437X(98)80008-7
  2. Back, M., Bu, D.X., Branstrom, R., Sheikine, Y., Yan, Z.Q., and Hansson, G.K. (2005). Leukotriene B4 signaling through NFkappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc. Natl. Acad. Sci. USA 102 17501-17506 https://doi.org/10.1073/pnas.0505845102
  3. Berkes, C.A., and Tapscott, S.J. (2005). MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol. 16, 585-595 https://doi.org/10.1016/j.semcdb.2005.07.006
  4. Bornemann, A., and Schmalbruch, H. (1994). Immunocytochemistry of M-cadherin in mature and regenerating rat muscle. Anat. Rec. 239, 119-125 https://doi.org/10.1002/ar.1092390202
  5. Charge, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209-238 https://doi.org/10.1152/physrev.00019.2003
  6. Chazaud, B., Sonnet, C., Lafuste, P., Bassez, G., Rimaniol, A.C., Poron, F., Authier, F.J., Dreyfus, P.A., and Gherardi, R.K. (2003). Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J. Cell Biol. 163, 1133-1143 https://doi.org/10.1083/jcb.200212046
  7. Collins, C.A. (2006). Satellite cell self-renewal. Curr. Opin. Pharmacol. 6, 301-306 https://doi.org/10.1016/j.coph.2006.01.006
  8. Gros, J., Manceau, M., Thome, V., and Marcelle, C. (2005). A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954-958 https://doi.org/10.1038/nature03572
  9. Grounds, M.D. (1987). Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice. J. Pathol. 153, 71-82 https://doi.org/10.1002/path.1711530110
  10. Hawke, T.J., and Garry, D.J. (2001). Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91, 534-551 https://doi.org/10.1152/jappl.2001.91.2.534
  11. Irintchev, A., Zeschnigk, M., Starzinski-Powitz, A., and Wernig, A (1994). Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev. Dyn. 199, 326-337 https://doi.org/10.1002/aja.1001990407
  12. Kim, N., and Luster, A.D. (2007). Regulation of immune cells by eicosanoid receptors. Scientific World J. 7, 1307-1328 https://doi.org/10.1100/tsw.2007.181
  13. LaBarge, M.A., and Blau, H.M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589-601 https://doi.org/10.1016/S0092-8674(02)01078-4
  14. Moore, R., and Walsh, F.S. (1993).The cell adhesion molecule Mcadherin is specifically expressed in developing and regenerating, but not denervated skeletal muscle. Development 117, 1409-1420
  15. Qiu, H., Johansson, A.S., Sjostrom, M., Wan, M., Schroder, O., Palmblad, J., and Haeggstrom, J.Z. (2006). Differential induction of BLT receptor expression on human endothelial cells by lipopolysaccharide, cytokines, and leukotriene B4. Proc. Natl. Acad. Sci. USA 103, 6913-6918 https://doi.org/10.1073/pnas.0602208103
  16. Serhan, C.N., Haeggstrom, J.Z., and Leslie, C.C. (1996). Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10, 1147-1158 https://doi.org/10.1096/fasebj.10.10.8751717
  17. Tidball, J.G. (2005). Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R345-353 https://doi.org/10.1152/ajpregu.00454.2004
  18. Torrente, Y., Belicchi, M., Sampaolesi, M., Pisati, F., Meregalli, M., D'Antona, G., Tonlorenzi, R., Porretti, L., Gavina, M., Mamchaoui, K., et al. (2004). Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J. Clin. Invest. 114, 182-195 https://doi.org/10.1172/JCI20325.10.1172/JCI20325
  19. Wada, K., Arita, M., Nakajima, A., Katayama, K., Kudo, C., Kamisaki, Y., and Serhan, C.N. (2006). Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J. 20, 1785-1792 https://doi.org/10.1096/fj.06-5809com
  20. Wrobel, E., Brzoska, E., and Moraczewski, J. (2007). M-cadherin and beta-catenin participate in differentiation of rat satellite cells. Eur. J. Cell Biol. 86, 99-109 https://doi.org/10.1016/j.ejcb.2006.11.004
  21. Yokomizo, T., Izumi, T., and Shimizu, T. (2001). Leukotriene B4: metabolism and signal transduction. Arch. Biochem. Biophys. 385, 231-241 https://doi.org/10.1006/abbi.2000.2168
  22. Yoshida, S., Fujisawa-Sehara, A., Taki, T., Arai, K., and Nabeshima, Y. (1996). Lysophosphatidic acid ang bFGF control different modes in proliferating myoblasts. J. Cell Biol. 132, 181-193 https://doi.org/10.1083/jcb.132.1.181

Cited by

  1. Acute Stress Responsive RGS Proteins in the Mouse Brain vol.30, pp.2, 2009, https://doi.org/10.1007/s10059-010-0102-3
  2. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions vol.63, pp.3, 2009, https://doi.org/10.1124/pr.110.004184
  3. Can muscle regeneration fail in chronic inflammation: a weakness in inflammatory myopathies? vol.269, pp.3, 2009, https://doi.org/10.1111/j.1365-2796.2010.02334.x
  4. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis vol.30, pp.3, 2009, https://doi.org/10.1007/s10555-011-9316-x
  5. Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway vol.304, pp.1, 2013, https://doi.org/10.1152/ajpcell.00038.2012
  6. Blocking Macrophage Leukotriene B 4 Prevents Endothelial Injury and Reverses Pulmonary Hypertension vol.5, pp.200, 2009, https://doi.org/10.1126/scitranslmed.3006674
  7. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment vol.305, pp.11, 2009, https://doi.org/10.1152/ajpregu.00128.2013
  8. The skeletal muscle arachidonic acid cascade in health and inflammatory disease vol.10, pp.5, 2009, https://doi.org/10.1038/nrrheum.2014.2
  9. Two distinct leukotriene B4 receptors, BLT1 and BLT2 vol.157, pp.2, 2009, https://doi.org/10.1093/jb/mvu078
  10. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion vol.67, pp.None, 2019, https://doi.org/10.1016/j.domaniend.2018.12.006
  11. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders vol.20, pp.14, 2009, https://doi.org/10.3390/ijms20143580
  12. New Surgical Model for Bone–Muscle Injury Reveals Age and Gender-Related Healing Patterns in the 5 Lipoxygenase (5LO) Knockout Mouse vol.11, pp.None, 2009, https://doi.org/10.3389/fendo.2020.00484
  13. The Kinetics of Lymphatic Dysfunction and Leukocyte Expansion in the Draining Lymph Node during LTB4 Antagonism in a Mouse Model of Lymphedema vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094455
  14. Hormesis and bone marrow stem cells: Enhancing cell proliferation, differentiation and resilience to inflammatory stress vol.351, pp.None, 2009, https://doi.org/10.1016/j.cbi.2021.109730