Side-Effects of SCB Liquid Fertilizer on Seed Germination and Physiological Activity of Pinus densiflora and Maackia amurensis Seedling

소나무와 다릅나무의 종자 발아와 유묘의 생리적 활성에 대한 SCB 액비 효과

  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Hyun-Suk (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yoo, Se-Kuel (Korea Forest Seed and Variety Center, Korea Forest Service) ;
  • Kim, Pan-Gi (Department of Forest and Environment Resources, Kyungpook National University)
  • Received : 2009.02.16
  • Accepted : 2009.03.04
  • Published : 2009.06.30

Abstract

This study was carried out to investigate the effects of SCB (Slurry Composting & Biofiltration) liquid fertilizer on seed germination properties and physiological activities of P. densiflora and M. amurensis seedling on the sand and tailing soil. Seed germination of two, tree species on the sand and tailing soil was delayed and inhibited under SCB treatment. Seedling growth of two species was also reduced by SCB application, and the growth reduction was associated with its concentration. Chlorophyll content decreased in the leaves of SCB-treated P. densiflora but increased in the leaves of SCB-treated M. amurensis when compared to control seedlings irrigated with tap water. On the other hand, Malondialdehyde (MDA) content, an indicator of lipid peroxidation, decreased in the leaves of SCB-treated P. densiflora, whereas it increased in the leaves of SCB-treated M. amurensis. Antioxidative enzyme activities in the leaves of P. densiflora increased on sand soil treated with 1/6 diluted SCB solution and on tailing soil treated with 1/3 diluted one, whereas those of M. amurensis seedlings increased only on tailing soil applied with the normal SCB solution and the 1/3 diluted SCB solution, respectively. These results were considered as side-effects of SCB liquid fertilizer which might accumulate salt through the physical changes in the soil.c

모래와 폐석토양에 SCB 액비를 처리한 후, 소나무와 다릅나무 종자의 발아특성 및 유묘의 생리적 활성 변화를 조사하였다. 모래와 폐석토양에 파종된 두 수종의 종자는 SCB액비 처리구에서 낮은 발아율과 발아속도를 나타냈으며, 평균발아일수도 증가하였다. 특히 SCB 원액이 처리된 소나무 종자들은 전혀 발아하지 않았다. 또한 소나무와 다릅나무의 유묘 생장은 SCB 처리구에서 뚜렷하게 감소하였으며, 두 수종의 엽내 엽록소 함량은 SCB 처리구에서 감소하였다. 소나무의 MDA 함량은 SCB 액비 처리로 감소하는 경향을 나타냈으나, 다릅나무의 MDA 함량은 SCB 액비 처리로 증가하였다. 소나무 잎의 항산화효소 활성은 SCB 처리구에서 일부 증가한 반면, 다릅나무 잎의 효소 활성은 SCB 원액과 3배 희석액 처리구서만 증가하였다. 결론적으로 SCB 액비는 소나무와 다릅나무 종자의 발아를 지연시키고, 심지어 유묘의 발생 및 생장을 저해시킬 수 있다. 이러한 효과는 SCB 액비 처리로 토양의 물리적 특성이 변하여 염류가 토양에 축적되면서 나타난 부작용으로 판단된다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. 김종구, 이경보, 이덕배, 이상복, 나승용. 2004. 배수조건 이 다른 논에서 돈분뇨 액비시용이 벼 생육 및 양분이동에 미치는 영향. 한국토양비료학회지 37: 97-103
  2. 박치호. 2007. SCB에 의한 양돈분뇨처리 방법. 가축분뇨 자연순환 촉진을 위한 SCB액비 이용 세미나 및 연시회 자료집. 농촌진흥청 축산과학원. pp. 43-65
  3. 송근준, 한심희, 하태주. 2003. 토양 중 NaCl 농도에 따른 느티나무의 생리적 특성 변화. 한국농림기상학회지 5: 166-171
  4. 임태준, 홍순달, 김승희, 박진면. 2008. 고추에서 SCB액비 시용량 설정을 위한 수량 및 품질 평가. 한국환경농학회지 27: 171-177 https://doi.org/10.5338/KJEA.2008.27.2.171
  5. 조도현, 한심희, 김판기. 2008. 석탄폐광지에서 백합나무의 생장과 중금속 흡수에 대한 시비 효과. 경북대학교 생명자연과학연구 6: 146-157
  6. 황선웅, 성좌경, 강보구, 이춘수, 윤승길, 김태원, 염기철. 2004. 돈분뇨 액비시용에 의한 고추 및 배추의 polyamine생합성. 한국토양비료학회지 37: 171-176
  7. Bouchereau, A., A. Aziz, F. Larher and J. Martin-Tanguy. 1999. Polyamines and environmental challenges: recent development review. Plant Sci. 140: 103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
  8. Dauen, A. and D. Quílez. 2004. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Europ. J. Agronomy. 21: 7-19 https://doi.org/10.1016/S1161-0301(03)00056-X
  9. Eghball, B. and J.F. Power. 1999. Composted and noncomposted manure application to conventional and no-tillage systems: corn yield and nitrogen uptake. Agron. J. 91: 819-825
  10. Flores, H.E. and P. Filner. 1985. polyamine catabolism in higher plants: characterization of pyrroline dehydroge nase. Plant Growth Regul. 3: 277-291 https://doi.org/10.1007/BF00117586
  11. Han, S.H., D.H. Kim, K.Y. Lee, J.J. Ku and P.-G. Kim. 2007. Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96: 551-560
  12. Han, S.H., J.C. Lee, W.Y. Lee, Y. Park and C.Y. Oh. 2006. Antioxidant characteristics and phytoremediation potential of 27 texa of roadside trees at industrial complex area. Korean Horticultural of Agricultural and Forest Meteorology 8: 159-168
  13. Heath, R.L. and L. Parker. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  14. Hernandez, J.A. and M.S. Almansa. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants. Physiologia Plantarum 115: 251-257 https://doi.org/10.1034/j.1399-3054.2002.1150211.x
  15. Hernandez, J.A., A.B. Aguilar, B. Portillo, E. Lopez-Gomez, J.M. Beneyto and M.F.G. Legaz. 2003. The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Functional Plant Biology 30:1127-1137 https://doi.org/10.1071/FP03098
  16. Hiscox, J.D. and G.F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334 https://doi.org/10.1139/b79-163
  17. Hountin, J.A., D. Couillard and A. Karam. 1997. Soil carbon, nitrogen and phosphorus contents in maize plots after 14years of pig slurry applications. J. Agric. Sci. 129: 187-191 https://doi.org/10.1017/S0021859697004504
  18. Iqbal, M., M. Ashraf, A. Jamil and S. Rehman. 2006. Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? Journal of Integrative Plant Biology 48: 181-189 https://doi.org/10.1111/j.1744-7909.2006.00181.x
  19. Jensen, L.S., I.S. Pedersen, T.B. Hansen and N.E. Nielsen. 2000. Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur. J. Agron. 12, 23-35 https://doi.org/10.1016/S1161-0301(99)00040-4
  20. Jeon, W.T., H.M. Park, C.Y. Park, K.D. Park, Y.S. Cho, E.S. Yun and U.G. Kang. 2003. Effects of liquid pig manure application on rice growth and environment of paddy soil. Korean J. Soil Sci. Fert. 36: 333-343
  21. Kim, D.H., S.H. Han, J.J. Ku, K.Y. Lee and P.-G. Kim. 2008. Physiological and Biochemical Responses to Ozone Toxicity in Five Species of genus Quercus Seedlings. Korean Journal of Agricultural and Forest Meteorology 10: 47-57 https://doi.org/10.5532/KJAFM.2008.10.2.047
  22. Küpper, H., F. Küpper and M. Spiller. 1996. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of Experimental Botany. 47: 259-266 https://doi.org/10.1093/jxb/47.2.259
  23. Marton, L. and D. Morris. 1987. Molecular and cellular functions of the polyamines. pp. 79-105. In: McCann, P.P., Pegg, A. and Sjoerdsma, A. (Eds.), Inhibition of Polyamine Metabooism. Academic Press. San Diego. CA. USA
  24. Misra, N. and A.K. Gupta. 2006. Effect of salinity and different nitrogen sources on 12the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology 163: 11-18 https://doi.org/10.1016/j.jplph.2005.02.011
  25. Misra, N. and U.N. Dwivedi. 2004. Genotypic difference in salinity tolerance of greengram cultivars. Plant Science 166: 1135-1142 https://doi.org/10.1016/j.plantsci.2003.11.028
  26. Murphy L.S., G.W. Wallingford, W.L. Powers and H.L. Manges. 1972. Effects of soil beef feedlot wastes on soil conditions and plant growth In: Proceedings of the cornell agricultural waste management conference. University of Cornell, Ithaca, NY, 4-9 June 1972
  27. Nielsen, N.E. and H.E. Jensen. 1990. Nitrate leaching from loamy soils as affected by crop rotation and nitrogen fertilizer application. Fert. Res. 26: 197-207 https://doi.org/10.1007/BF01048757
  28. Paoletti, E., C. Nali, R. Marabottini, G. Della Rocca, G. Lorenzini, A.R. Paolacci, M. Ciaffi and M. Badiani. 2003. Strategies of response to ozone in Mediterranean evergreen species pp. 336-343. In: Karlsson, P.E., Sellden, G. and Pleijel, H. (Eds.), Establishing Ozone Critical Levels II. UNECE Workshop Report. IVL report B 1523, IVL Swedish Environmental Research Institute, Goteborg, Sweden
  29. Sairam, R.K. and G.C. Srivastava. 2002. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162: 897-904 https://doi.org/10.1016/S0168-9452(02)00037-7
  30. Scott, S.J., R.A. Jones and W.A. Williams. 1984. Review of data analysis methods for seed germination. Crop Science 24: 1192-1199 https://doi.org/10.2135/cropsci1984.0011183X002400060043x
  31. Shalhevet, J. 1993. Plants under salt and water stress. Plant Adaptation to Environmental Stress. pp. 133-154. In: Fowden, L., Mansfield T. and Stoddat, J. (Eds.), Champman& Hall
  32. Shin, J.S., H.H. Lee, J.W. Ryoo, K.J. Choi, Y.W. Rim, W.H. Kim, K.Y. Kim and K.J. Lee. 1999. Effects of swine manure separated from its slurry on pasture productivity and soil chemical characteristics. Korean J. Anim. Sci 41: 479-486
  33. Ushio, S., N. Yosimura, K. Saito and N. Nagajima. 2000. Nitrogen decomposition rate of animal wastes composts and dry wastes for 141 days in summer, and estimation. Soil Sci. Plant Nutr. 71: 249-253 https://doi.org/10.1097/00010694-195103000-00026