References
- Stoffel, W., Jenke, B., Holz, B., Binczek, E., Gunter, R.H., Knifka, J., Koebke, J. and Niehoff, A. (2007) Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am. J. Pathol. 171, 153-161 https://doi.org/10.2353/ajpath.2007.061285
- Aubin, I., Adams, C.P., Opsahl, S., Septier, D., Bishop, C.E., Auge, N., Salvayre, R., Negre-Salvayre, A., Goldberg, M., Guenet, J.L. and Poirier, C. (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat. Genet. 37, 803-805 https://doi.org/10.1038/ng1603
- Stoffel, W., Jenke, B., Block, B., Zumbansen, M. and Koebke, J. (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc. Natl. Acad. Sci. U.S.A. 102, 4554-4559 https://doi.org/10.1073/pnas.0406380102
- Hofmann, K., Tomiuk, S., Wolff, G. and Stoffel, W. (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc. Natl. Acad. Sci. U.S.A. 97, 5895-5900 https://doi.org/10.1073/pnas.97.11.5895
- Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M. and Stoffel, W. (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc. Natl. Acad. Sci. U.S.A. 95, 3638-3643 https://doi.org/10.1073/pnas.95.7.3638
- Goldberg, M., Opsahl, S., Aubin, I., Septier, D., Chaussain-Miller, C., Boskey, A. and Guenet, J.L. (2008) Sphingomyelin degradation is a key factor in dentin and bone mineralization: lessons from the fro/fro mouse. The chemistry and histochemistry of dentin lipids. J. Dent. Res. 87, 9-13 https://doi.org/10.1177/154405910808700103
- Park, S.H. (2005) Fine tuning and cross-talking of TGF-beta signal by inhibitory Smads. J. Biochem. Mol. Biol. 38, 9-16 https://doi.org/10.5483/BMBRep.2005.38.1.009
- Ihm, H.J., Yang, S.J., Huh, J.W., Choi, S.Y. and Cho, S.W. (2008) Soluble expression and purification of synthetic human bone morphogenetic protein-2 in Escherichia coli. BMB reports 41, 404-407 https://doi.org/10.5483/BMBRep.2008.41.5.404
- Bidder, M., Latifi, T. and Towler, D.A. (1998) Reciprocal temporospatial patterns of Msx2 and Osteocalcin gene expression during murine odontogenesis. J. Bone Miner Res.13, 609-619 https://doi.org/10.1359/jbmr.1998.13.4.609
- Kim, Y.J., Kim, B.G., Lee, S.J., Lee, H.K., Lee, S.H., Ryoo, H.M. and Cho, J.Y. (2007) The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation. J. Cell Physiol. 211, 253-260 https://doi.org/10.1002/jcp.20933
- Choi, J.Y., Rosen, V., Stein, J.L., Wijnen van, A.J., Stein, G.S., Lian, J.B. and Ryoo, H.M. (1999) Transient upregulation of CBFA1 in response to bone morphogenetic protein- 2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J. Cell Biochem. 73, 114-125 https://doi.org/10.1002/(SICI)1097-4644(19990401)73:1<114::AID-JCB13>3.0.CO;2-M
- Standal, T., Abildgaard, N., Fagerli, U.M., Stordal, B., Hjertner, O., Borset, M. and Sundan, A. (2007) HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 109, 3024-3030
- Kanatani, N., Fujita, T., Fukuyama, R., Liu, W.,Yoshida, C.A., Moriishi, T., Yamana, K., Miyazaki, T., Toyosawa, S. and Komori, T. (2006) Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev. Biol. 296, 48-61 https://doi.org/10.1016/j.ydbio.2006.03.039
- Bellido, T., Ali, A.A, Plotkin,. L.I., Fu, Q., Gubrij, I., Roberson, P.K., Weinstein, R.S., O'Brien, C.A., Manolagas, S.C. and Jilka, R.L. (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J. Biol. Chem. 278, 50259-50272 https://doi.org/10.1074/jbc.M307444200
- Cho, J.Y., Lee, W.B., Kim, H.J., Woo, K.M., Baek, J.H., Choi, J.Y., Hur, C.G. and Ryoo, H.M. (2006) Bone-related gene profiles in developing calvaria. Gene 372, 71-81 https://doi.org/10.1016/j.gene.2005.12.010
- Karakashian, A.A., Giltiay, N.V., Smith, G.M. and Nikolova-Karakashian, M.N. (2004) Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. Faseb J. 18, 968-970 https://doi.org/10.1096/fj.03-0875fje
- Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B. and Kronke, M. (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem. 281, 13784-13793 https://doi.org/10.1074/jbc.M511306200
- Kozawa, O., Hatakeyama, D., Tokuda, H., Oiso, Y., Matsuno, H. and Uematsu, T. (2002) Sphingomyelinase amplifies BMP-4-induced osteocalcin synthesis in osteoblasts: role of ceramide. Cell Signal 14, 999-1004 https://doi.org/10.1016/S0898-6568(02)00033-5
- Clarke, C.J., Truong,T.G. and Hannun, Y.A. (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha- stimulated expression of vascular cell adhesion molecule- 1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J. Biol. Chem. 282, 1384-1396 https://doi.org/10.1074/jbc.M609216200
- Tani, M. and Hannun, Y.A. (2007) Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 581, 1323-1328 https://doi.org/10.1016/j.febslet.2007.02.046
- Miura, Y., Gotoh, E., Nara, F., Nishijima, M. and Hanada, K. (2004) Hydrolysis of sphingosylphosphocholine by neutral sphingomyelinases. FEBS Lett. 557, 288-292 https://doi.org/10.1016/S0014-5793(03)01523-0
- Kim, W.J., Okimoto,R.A., Purton, L.E., Goodwin, M., Haserlat, S.M., Dayyani, F., Sweetser, D.A., McClatchey, A.I., Bernard, O.A., Look, A.T., Bell, D.W., Scadden, D.T. and Haber D.A. (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111, 4716-4722 https://doi.org/10.1182/blood-2007-10-113068
- Chuang, M.J., Sun, K.H., Tang, S.J., Deng, M.W., Wu,Y.H., Sung, J.S., Cha, T.L. and Sun, G.H. (2008) Tumorderived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 99, 905-913 https://doi.org/10.1111/j.1349-7006.2008.00756.x
Cited by
- Sphingomyelin Phosphodiesterase 3 Enhances Cytodifferentiation of Periodontal Ligament Cells vol.96, pp.3, 2017, https://doi.org/10.1177/0022034516677938
- New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation vol.46, pp.6, 2010, https://doi.org/10.1016/j.bone.2010.02.024
- Bone Morphogenic Protein (BMP) Signaling Up-regulates Neutral Sphingomyelinase 2 to Suppress Chondrocyte Maturation via the Akt Protein Signaling Pathway as a Negative Feedback Mechanism vol.289, pp.12, 2014, https://doi.org/10.1074/jbc.M113.509331
- P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest vol.6, pp.10, 2015, https://doi.org/10.1038/cddis.2015.268
- Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI vol.51, pp.5, 2012, https://doi.org/10.1016/j.bone.2012.08.110
- The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures vol.99, pp.5, 2016, https://doi.org/10.1007/s00223-016-0176-9
- Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation vol.594, pp.11, 2016, https://doi.org/10.1113/JP271340
- Mammalian Neutral Sphingomyelinases: Regulation and Roles in Cell Signaling Responses vol.12, pp.4, 2010, https://doi.org/10.1007/s12017-010-8120-z
- PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway vol.112, pp.8, 2011, https://doi.org/10.1002/jcb.23124
- Neutral Sphingomyelinase-2 Mediates Growth Arrest by Retinoic Acid through Modulation of Ribosomal S6 Kinase vol.286, pp.24, 2011, https://doi.org/10.1074/jbc.M110.193375
- ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation vol.57, pp.5, 2016, https://doi.org/10.1194/jlr.M067447
- Role of SMPD3 during Bone Fracture Healing and Regulation of Its Expression vol.39, pp.4, 2018, https://doi.org/10.1128/MCB.00370-18