DOI QR코드

DOI QR Code

Upregulation of smpd3 via BMP2 stimulation and Runx2

  • Chae, Young-Mi (Department of Biochemistry, School of Dentistry, Kyungpook National University) ;
  • Heo, Sun-Hee (Department of Biochemistry, School of Dentistry, Kyungpook National University) ;
  • Kim, Jae-Young (Department of Biochemistry, School of Dentistry, Kyungpook National University) ;
  • Lee, Jae-Mok (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Ryoo, Hyun-Mo (Department of Cell and Developmental Biology, School of Dentistry, Seoul National University) ;
  • Cho, Je-Yoel (Department of Biochemistry, School of Dentistry, Kyungpook National University)
  • Published : 2009.02.28

Abstract

Deletion of smpd3 induces osteogenesis and dentinogenesis imperfecta in mice. smpd3 is highly elevated in the parietal bones of developing mouse calvaria, but not in sutural mesenchymes. Here, we examine the mechanism of smpd3 regulation, which involves BMP2 stimulation of Runx2. smpd3 mRNA expression increased in response to BMP2 treatment and Runx2 transfection in C2C12 cells. The Runx2-responsive element (RRE) encoded within the -562 to -557 region is important for activation of the smpd3 promoter by Runx2. Electrophoretic mobility shift assays revealed that Runx2 binds strongly to the -355 to -350 RRE and less strongly to the -562 to -557 site. Thus, the smpd3 promoter is activated by BMP2 and is directly regulated by the Runx2 transcription factor. This novel description of smpd3 regulation will aid further studies of bone development and osteogenesis.

Keywords

References

  1. Stoffel, W., Jenke, B., Holz, B., Binczek, E., Gunter, R.H., Knifka, J., Koebke, J. and Niehoff, A. (2007) Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am. J. Pathol. 171, 153-161 https://doi.org/10.2353/ajpath.2007.061285
  2. Aubin, I., Adams, C.P., Opsahl, S., Septier, D., Bishop, C.E., Auge, N., Salvayre, R., Negre-Salvayre, A., Goldberg, M., Guenet, J.L. and Poirier, C. (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat. Genet. 37, 803-805 https://doi.org/10.1038/ng1603
  3. Stoffel, W., Jenke, B., Block, B., Zumbansen, M. and Koebke, J. (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc. Natl. Acad. Sci. U.S.A. 102, 4554-4559 https://doi.org/10.1073/pnas.0406380102
  4. Hofmann, K., Tomiuk, S., Wolff, G. and Stoffel, W. (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc. Natl. Acad. Sci. U.S.A. 97, 5895-5900 https://doi.org/10.1073/pnas.97.11.5895
  5. Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M. and Stoffel, W. (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc. Natl. Acad. Sci. U.S.A. 95, 3638-3643 https://doi.org/10.1073/pnas.95.7.3638
  6. Goldberg, M., Opsahl, S., Aubin, I., Septier, D., Chaussain-Miller, C., Boskey, A. and Guenet, J.L. (2008) Sphingomyelin degradation is a key factor in dentin and bone mineralization: lessons from the fro/fro mouse. The chemistry and histochemistry of dentin lipids. J. Dent. Res. 87, 9-13 https://doi.org/10.1177/154405910808700103
  7. Park, S.H. (2005) Fine tuning and cross-talking of TGF-beta signal by inhibitory Smads. J. Biochem. Mol. Biol. 38, 9-16 https://doi.org/10.5483/BMBRep.2005.38.1.009
  8. Ihm, H.J., Yang, S.J., Huh, J.W., Choi, S.Y. and Cho, S.W. (2008) Soluble expression and purification of synthetic human bone morphogenetic protein-2 in Escherichia coli. BMB reports 41, 404-407 https://doi.org/10.5483/BMBRep.2008.41.5.404
  9. Bidder, M., Latifi, T. and Towler, D.A. (1998) Reciprocal temporospatial patterns of Msx2 and Osteocalcin gene expression during murine odontogenesis. J. Bone Miner Res.13, 609-619 https://doi.org/10.1359/jbmr.1998.13.4.609
  10. Kim, Y.J., Kim, B.G., Lee, S.J., Lee, H.K., Lee, S.H., Ryoo, H.M. and Cho, J.Y. (2007) The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation. J. Cell Physiol. 211, 253-260 https://doi.org/10.1002/jcp.20933
  11. Choi, J.Y., Rosen, V., Stein, J.L., Wijnen van, A.J., Stein, G.S., Lian, J.B. and Ryoo, H.M. (1999) Transient upregulation of CBFA1 in response to bone morphogenetic protein- 2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J. Cell Biochem. 73, 114-125 https://doi.org/10.1002/(SICI)1097-4644(19990401)73:1<114::AID-JCB13>3.0.CO;2-M
  12. Standal, T., Abildgaard, N., Fagerli, U.M., Stordal, B., Hjertner, O., Borset, M. and Sundan, A. (2007) HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 109, 3024-3030
  13. Kanatani, N., Fujita, T., Fukuyama, R., Liu, W.,Yoshida, C.A., Moriishi, T., Yamana, K., Miyazaki, T., Toyosawa, S. and Komori, T. (2006) Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev. Biol. 296, 48-61 https://doi.org/10.1016/j.ydbio.2006.03.039
  14. Bellido, T., Ali, A.A, Plotkin,. L.I., Fu, Q., Gubrij, I., Roberson, P.K., Weinstein, R.S., O'Brien, C.A., Manolagas, S.C. and Jilka, R.L. (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J. Biol. Chem. 278, 50259-50272 https://doi.org/10.1074/jbc.M307444200
  15. Cho, J.Y., Lee, W.B., Kim, H.J., Woo, K.M., Baek, J.H., Choi, J.Y., Hur, C.G. and Ryoo, H.M. (2006) Bone-related gene profiles in developing calvaria. Gene 372, 71-81 https://doi.org/10.1016/j.gene.2005.12.010
  16. Karakashian, A.A., Giltiay, N.V., Smith, G.M. and Nikolova-Karakashian, M.N. (2004) Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. Faseb J. 18, 968-970 https://doi.org/10.1096/fj.03-0875fje
  17. Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B. and Kronke, M. (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem. 281, 13784-13793 https://doi.org/10.1074/jbc.M511306200
  18. Kozawa, O., Hatakeyama, D., Tokuda, H., Oiso, Y., Matsuno, H. and Uematsu, T. (2002) Sphingomyelinase amplifies BMP-4-induced osteocalcin synthesis in osteoblasts: role of ceramide. Cell Signal 14, 999-1004 https://doi.org/10.1016/S0898-6568(02)00033-5
  19. Clarke, C.J., Truong,T.G. and Hannun, Y.A. (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha- stimulated expression of vascular cell adhesion molecule- 1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J. Biol. Chem. 282, 1384-1396 https://doi.org/10.1074/jbc.M609216200
  20. Tani, M. and Hannun, Y.A. (2007) Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 581, 1323-1328 https://doi.org/10.1016/j.febslet.2007.02.046
  21. Miura, Y., Gotoh, E., Nara, F., Nishijima, M. and Hanada, K. (2004) Hydrolysis of sphingosylphosphocholine by neutral sphingomyelinases. FEBS Lett. 557, 288-292 https://doi.org/10.1016/S0014-5793(03)01523-0
  22. Kim, W.J., Okimoto,R.A., Purton, L.E., Goodwin, M., Haserlat, S.M., Dayyani, F., Sweetser, D.A., McClatchey, A.I., Bernard, O.A., Look, A.T., Bell, D.W., Scadden, D.T. and Haber D.A. (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111, 4716-4722 https://doi.org/10.1182/blood-2007-10-113068
  23. Chuang, M.J., Sun, K.H., Tang, S.J., Deng, M.W., Wu,Y.H., Sung, J.S., Cha, T.L. and Sun, G.H. (2008) Tumorderived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 99, 905-913 https://doi.org/10.1111/j.1349-7006.2008.00756.x

Cited by

  1. Sphingomyelin Phosphodiesterase 3 Enhances Cytodifferentiation of Periodontal Ligament Cells vol.96, pp.3, 2017, https://doi.org/10.1177/0022034516677938
  2. New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation vol.46, pp.6, 2010, https://doi.org/10.1016/j.bone.2010.02.024
  3. Bone Morphogenic Protein (BMP) Signaling Up-regulates Neutral Sphingomyelinase 2 to Suppress Chondrocyte Maturation via the Akt Protein Signaling Pathway as a Negative Feedback Mechanism vol.289, pp.12, 2014, https://doi.org/10.1074/jbc.M113.509331
  4. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest vol.6, pp.10, 2015, https://doi.org/10.1038/cddis.2015.268
  5. Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI vol.51, pp.5, 2012, https://doi.org/10.1016/j.bone.2012.08.110
  6. The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures vol.99, pp.5, 2016, https://doi.org/10.1007/s00223-016-0176-9
  7. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation vol.594, pp.11, 2016, https://doi.org/10.1113/JP271340
  8. Mammalian Neutral Sphingomyelinases: Regulation and Roles in Cell Signaling Responses vol.12, pp.4, 2010, https://doi.org/10.1007/s12017-010-8120-z
  9. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway vol.112, pp.8, 2011, https://doi.org/10.1002/jcb.23124
  10. Neutral Sphingomyelinase-2 Mediates Growth Arrest by Retinoic Acid through Modulation of Ribosomal S6 Kinase vol.286, pp.24, 2011, https://doi.org/10.1074/jbc.M110.193375
  11. ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation vol.57, pp.5, 2016, https://doi.org/10.1194/jlr.M067447
  12. Role of SMPD3 during Bone Fracture Healing and Regulation of Its Expression vol.39, pp.4, 2018, https://doi.org/10.1128/MCB.00370-18