Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams

철골보의 내화시간 평가를 위한 구조 및 열적 변수해석

  • Received : 2009.08.27
  • Accepted : 2009.10.06
  • Published : 2009.12.27

Abstract

This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.

본 연구에서는 다양한 설계조건 하에서 철골보의 내화시간을 평가할 수 있는 산정식을 열-구조 연성해석(fully coupled thermo-mechanical analysis)을 토대로 제안하였다. 본 연구에서 제안하는 산정식은 철골보의 화재거동에 미치는 주요 인자를 구조변수 및 열변수로 명시적으로 반영하므로 각 설계변수의 내화성능에 대한 영향을 설계자가 쉽게 정량적으로 파악할 수 있는 강점이 있다. 광범위한 변수해석을 수행하기에 앞서 실물대 화재실험 결과를 활용하여 본 연구의 열-구조 연성해석모델의 타당성을 검증한 후, 철골보에 붕괴처짐(run-away deflection)이 발생할 때까지 화재거동에 대한 각 변수들의 영향력을 검토하였다. 이러한 수치해석결과를 다양한 설계조건에서 철골보의 내화시간 예측에 활용할 수 있도록 다중선형회귀분석을 통해 통계학적으로 신뢰도가 높은 평가식을 제안하였다. 현행 사양설계기준에서의 활용법을 사례를 들어 예시하였고, 제시된 식으로부터 얻어지는 경제성과 장점을 입증하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. ADINA R&D, Inc. (2008) ADINA theory and modeling guide, Report ARD08-7, ADINA R&D, Inc., USA
  2. Chung, K., Park, S. and Choi, S. (2008) Material effect for predicting the fire resistance of concrete-filled square steel tube column under constant axial load, Journal of Constructional Steel Research, Vol.64, pp.1505-1515 https://doi.org/10.1016/j.jcsr.2008.01.002
  3. European Committee for Standardization (2001) Eurocode 3Design of Steel Structures, Part 1.2: Structural Fire Design., British Standards Institution, UK
  4. Incropera, F. P. and Dewitt, D. P. (2002) Fundamentals of Heat And Mass Transfer, 5th Edition, John Wiley & Sons, Inc., USA
  5. Kodur, V. K. R. (1998) Design equations for evaluating fire resistance of SFRC-filled HSS columns, Journalof Structural Engineering, Vol. 124, pp.671-677 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(671)
  6. Kodur, V. K. R. (2007) Guidelines for fire resistant design of concrete filled steel HSS columns-state-of-the-artand research needs, International Journal of Steel Structures, Vol. 7, pp.173-182
  7. Liu, T. C. H., Fahad, M. K. and Davies, J. M. (2002)Experimental investigation of behaviour of axially restrainedsteel beams in fire, Journal of Constructional SteelResearch, Vol. 58, pp.1211-1230 https://doi.org/10.1016/S0143-974X(01)00062-1
  8. Wainman, D. E. and Kirby, B. R. (1987) Compendium of UK Standard Fire Test Data, Unprotected Structural Steel-1, Ref. No. RS/RSC/S/10328/1/98/B, British Steel Corporation, Swinden Laboratories, Rotherham
  9. Wang, Y. C. (2002) Steel and Composite Structure: Behaviour and Design for Fire Safety, New Fetter Lane, UK
  10. Yin, Y. Z. and Wang, Y. C. (2004) A numerical study of large deflection behaviour of restrained steel beams at elevated temperatures, Journal of Constructional Steel Research, Vol. 60, pp.1029-1047 https://doi.org/10.1016/j.jcsr.2003.09.005