DOI QR코드

DOI QR Code

Keratin 17 identified by proteomic analysis may be involved in tumor angiogenesis

  • Xu, Yong (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Zhang, Su-Zhen (Division of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Huang, Can-Hua (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Liu, Xin-Yu (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Zhong, Zhen-Hua (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Hou, Wen-Li (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Su, Zi-Fen (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University) ;
  • Wei, Yu-Quan (State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School and School of Life Science, Sichuan University)
  • Published : 2009.06.30

Abstract

Angiogenesis is crucial for solid tumor growth. By secreting angiogenic factors, tumor cells induce angiogenesis. However, targeting these angiogenic factors for cancer therapy is not always successful, suggesting that other factors may be involved in tumor angiogenesis. This work shows that 25 protein spots were differentially expressed by two-dimensional gel electrophoretic analysis when HepG2 cells induced endothelial cell differentiation to tube in vitro, and most of them were upregulated. Twenty-one proteins were identified with MALDITOF-MS, and the other four were identified by LTQ-MS/MS. Keratins were identified as one class of these upregulated proteins. Further study indicated that the expression of keratin 17 in cultured endothelial cells is likely microenvironment regulated, because its expression can be induced by HepG2 cells and bFGF as well as serum in culture media. Increased expression of keratins in endothelial cells, such as keratin 17, may contribute to the angiogenesis induced by HepG2 cells.

Keywords

References

  1. Kang, H. Y., Shim, D., Kang, S. S., Chang, S. I. and Kim, H. Y. (2006) Protein kinase B inhibits endostatin-induced apoptosis in HUVECs. J. Biochem. Mol. Biol. 39, 97-104 https://doi.org/10.5483/BMBRep.2006.39.1.097
  2. Risau, W. (1997) Mechanisms of angiogenesis. Nature. 386, 671-674 https://doi.org/10.1038/386671a0
  3. Russell, P. J., Bennett, S. and Stricker, P. (1998) Growth factor involvement in progression of prostate cancer. Clin. Chem. 44, 705-723
  4. Schweigerer, L., Nuefeld, G. and Freidman, J. (1987) Capillary endothelial cells express basic fibroblast growth factor, a mitogen which promotes their own growth. Nature 325, 257-259 https://doi.org/10.1038/325257a0
  5. Barkefors, I., Le Jan, S., Jakobsson, L., Hejll, E., Carlson, G., Johansson, H., Jarvius, J., Park, J. W., Jeon, N. L. and Kreuger, J. (2008) Endothelial cell migration in stable gradients of VEGFA and FGF2: effects on chemotaxis and chemokinesis. J. Biol. Chem. 283, 13905-13912 https://doi.org/10.1074/jbc.M704917200
  6. Liu, Y. and Deisseroth, A. (2006) Tumor vascular targeting therapy with viral vectors. Blood 107, 3027-3033 https://doi.org/10.1182/blood-2005-10-4114
  7. Zeng, Q., Li, S., Chepeha, D. B., Giordano, T. J., Li, J., Zhang, H., Polverini, P. J., Nor, J., Kitajewski, J. and Wang, C. Y. (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8, 13-23 https://doi.org/10.1016/j.ccr.2005.06.004
  8. Kerbel, R. S. and Kamen, B. A. (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 4, 423-436 https://doi.org/10.1038/nrc1369
  9. El Ghalbzouri, A., Jonkman, M., Kempenaar, J. and Ponec, M. (2003) Recessive epidermolysis bullosa simplex phenotype reproduced in vitro: ablation of keratin 14 is partially compensated by keratin 17. Am. J. Pathol. 163, 1771-1779 https://doi.org/10.1016/S0002-9440(10)63537-7
  10. He, Q. M., Wei, Y. Q., Tian, L., Zhao, X., Su, J. M., Yang, L., Lu, Y., Kan, B., Lou, Y. Y., Huang, M. J., Xiao, F., Liu, J. Y., Hu, B., Luo, F., Jiang, Y., Wen, Y. J., Deng, H. X., Li, J., Niu, T. and Yang, J. L. (2003) Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J. Biol. Chem. 278, 21831-21836 https://doi.org/10.1074/jbc.M300880200
  11. Vernon, R. B. and Sage, E. H. (1995) Between molecules and morphology. Extracelluar matrix and creation of vascular form. Am. J. Path. 147, 873-883
  12. Tei, K., Kawakami-Kimura, N., Taguchi, O., Kumamoto, K., Higashiyama, S., Taniguchi, N., Toda, K., Kawata, R., Hisa, Y. and Kannagi, R. (2002) Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res. 62, 6289-6296
  13. Chu, Y. W., Runyan, R. B., Oshima, R. G. and Hendrix, M. J. (1993) Expression of complete keratin filaments in mouse L cells augments cell migration and invasion. Proc. Natl. Acad. Sci. U. S. A. 90, 4261-4265 https://doi.org/10.1073/pnas.90.9.4261
  14. Collard, C. D., Montalto, M. C., Reenstra, W. R., Buras, J. A. and Stahl, G. L. (2001) Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin 1. Am. J. Pathol. 159, 1045-1054 https://doi.org/10.1016/S0002-9440(10)61779-8
  15. Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., Tian, B., Liu, Y. K., Shao, X. X., Ye, S. L., Wu, J. R., Zeng, R., Wang, H. Y., Tang, Z. Y. and Xia, Q. C. (2004) From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol. Cell Proteomics. 3, 73-81 https://doi.org/10.1074/mcp.M300094-MCP200
  16. Bhawan, J., Whren, K., Panova, I. and Yaar, M. (1997) Keratin 16 expression in epidermal melanocytes of normal human skin. Nature 386, 671-674 https://doi.org/10.1038/386671a0
  17. Katagata, Y., Takeda, H., Ishizawa, T., Hozumi, Y. and Kondo, S. (2002) Occurrence and comparison of the expressed keratins in cultured human fibroblasts, endothelial cells and their sarcomas. J. Dermatol. Sci. 30, 1-9 https://doi.org/10.1016/S0923-1811(02)00039-7
  18. Miettinen, M. and Fetsch, J. F. (2000) Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum. Pathol. 31, 1062-1067 https://doi.org/10.1053/hupa.2000.9843
  19. Jahn, L., Fouquet, B., Rohe, K. and Franke, W. W. (1987) Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation 36, 234-254 https://doi.org/10.1111/j.1432-0436.1987.tb00198.x
  20. Ridley, A. J. (2001) Rho GTPases and cell migration. J. Cell Sci. 114, 2713-2722
  21. Chu, Y. W., Seftor, E. A., Romer, L. H. and Hendrix, M. J. (1996) Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am. J. Pathol. 148, 63-69
  22. Schmidt, C. E., Horwitz, A. F., Lauffenburger, D. A. and Sheetz, M. P. (1993) Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J. Cell Biol. 123, 977-991 https://doi.org/10.1083/jcb.123.4.977
  23. Seftor, R. E. B., Seftor, E. A., Gehlsen, K. R., Stetler-Stevenson, W. G., Brown, P. D., Ruoslahti, E. and Hendrix, M. J. C. (1992) Role of the ανβ3 integrin in human melanoma cell invasion. Proc. Natl. Acad. Sci. U.S.A. 89, 1557-1561 https://doi.org/10.1073/pnas.89.5.1557
  24. Torry, R. J. and Rongish, B. J. (1992) Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. Am. J. Reprod. Immunol. 27, 171-179 https://doi.org/10.1111/j.1600-0897.1992.tb00746.x
  25. Bohman, S., Matsumoto, T., Suh, K., Dimberg, A., Jakobsson, L., Yuspa, S. and Claesson-Welsh, L. (2005) Proteomic analysis of vascular endothelial growth factor-induced endothelial cell differentiation reveals a role for chloride intracellular channel 4 (CLIC4) in tubular morphogenesis. J. Biol. Chem. 280, 42397-42404 https://doi.org/10.1074/jbc.M506724200
  26. Casey, T. M., Arthur, P. G. and Bogoyevitch, M. A. (2005) Proteomic analysis reveals different protein changes during endothelin-1- or leukemic inhibitory factor-induced hypertrophy of cardiomyocytes in vitro. Mol. Cell Proteomics. 4, 651-661 https://doi.org/10.1074/mcp.M400155-MCP200
  27. Wang, Y. J., Zhang, G. Y., Xiao, Z. Q., Wang, H. M. and Chen, Z. C. (2006) Preliminary proteomic analysis of indomethacin's effect on tumor transplanted with colorectal cancer cell in nude mice. J. Biochem. Mol. Biol. 39, 171-177 https://doi.org/10.5483/BMBRep.2006.39.2.171
  28. Gou, M. L., Huang, M. J., Qian, Z. Y., Yang, L., Dai, M., Li, X. Y., Wang, K., Wen, Y. J., Li, J., Zhao, X. and Wei, Y. Q. (2007) Preparation of anionic poly (epsilon-caprolactone)-poly (ethylene glycol)-poly (epsilon-caprolactone) copolymeric nanoparticles as basic protein antigen carrier. Growth Factors 25, 202-208 https://doi.org/10.1080/08977190701671613

Cited by

  1. Proteomic Analysis of Zebrafish Caudal Fin Regeneration vol.11, pp.6, 2012, https://doi.org/10.1074/mcp.M111.014118
  2. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17 vol.36, pp.11, 2015, https://doi.org/10.1093/carcin/bgv110
  3. A Systematic Analysis on DNA Methylation and the Expression of Both mRNA and microRNA in Bladder Cancer vol.6, pp.11, 2011, https://doi.org/10.1371/journal.pone.0028223
  4. Macrophage-capping protein as a tissue biomarker for prediction of response to gemcitabine treatment and prognosis in cholangiocarcinoma vol.75, pp.5, 2012, https://doi.org/10.1016/j.jprot.2011.11.030
  5. Cleavage of Host Cytokeratin-6 by Lysine-Specific Gingipain Induces Gingival Inflammation in Periodontitis Patients vol.10, pp.2, 2015, https://doi.org/10.1371/journal.pone.0117775