말쥐치 Thamnaconus modestus 자치어의 성장에 따른 소화기관 및 소화효소 발달

Developmental Changes in Digestive Organ and Digestive Enzyme Activity of Filefish Thamnaconus modestus

  • 곽우석 (경상대학교 해양생물교육연구센터.해양산업연구소) ;
  • 이소광 (경상남도수산자원연구소)
  • Gwak, Woo-Seok (Marine Bio-Education & Research Center, The Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, So-Gwang (Gyeongsangnam-do Fisheries Resources and Research Institute)
  • 투고 : 2009.06.30
  • 심사 : 2009.08.19
  • 발행 : 2009.09.30

초록

말쥐치 자치어의 성장에 따른 소화기관 및 trypsin, pepsine-like enzyme, lipase, amylase 활성의 변화를 확인하기 위하여 64일간 사육실험을 수행하였다. 자어는 부화 후 2~26일 rotifer Brachionus plicatilis를 급이 하였고 부화 후 10~64일에는 Artemia nauplii를 급이 하였다. 그리고 부화 후 40일부터 배합사료를 급이 하기 시작하여 사료를 서서히 전환하였다. 사육기간 동안 수온은 $21.5{\sim}24.2^{\circ}C$를 유지하였다. Trypsin과 Lipase 활성은 부화 후 4일째($6.0{\pm}1.4unit$) 그리고 6일째($4.5{\pm}1.4unit$) 각각 확인되었다. 이들 두 효소의 활성은 말쥐치 자어후기와 치어초기에 급격히 증가하는 경향을 나타내었다. Pepsin-like enzyme 활성은 부화 후 10일째 확인되었고 말쥐치 치어 초기 단계인 28일부터 급격히 증가하였다. Pepsin-like enzyme 활성 변화와 위선 수의 변화가 일치하는 것은 흥미로운 현상이라고 할 수 있다. Amylase 활성은 부화 후 10일째 확인되었고 부화 후 28일까지 낮은 값을 유지하였으며 부화 후 28일과 40일 사이에 급격히 증가하였다. 결과적으로 말쥐치 치어초기의 Trypsin과 Pepsin-like enzyme 활성의 급격한 증가와 위선 수의 증가에 기인하여 치어기 급격한 체성장이 일어났을 것으로 사료된다.

Larvae and juveniles of the filefish Thamnaconus modestus were reared for 64 days after hatching (DAH) in order to determine the activity of four enzymes (trypsin, pepsin-like enzyme, lipase, amylase) during ontogeny. Larvae were fed on rotifer Brachionus plicatilis from 2 to 26 DAH, Artemia nauplii from 10 to 64 DAH, and then gradually changed to pelleted feed from 40 DAH. Temperature was kept between $21.5{\sim}24.2^{\circ}C$ Activity of trypsin and lipase was found in larvae 4 DAH ($6.0{\pm}1.4unit$) and 6 DAH ($4.5{\pm}1.4unit$), respectively. The evolution of activity in both enzymes showed a profile marked by drastic increases between late larval and early juvenile stages. Pepsin-like enzyme activity was found at 10 DAH and drastically increased from 28 DAH, corresponding with the early juvenile stage of T. modestus. Interestingly, developmental changes in the pepsin-like enzyme activity coincided well with increases in the number of gastric glands. Amylase activity was found at 10 DAH and was maintained at a low level up to 28 DAH, followed by a drastic increase from 28 DAH to 40 DAH. It might be concluded that a drastic increase in trypsin and pepsin-like enzyme activities, and a corresponding increase in the number of gastric glands reflects a higher somatic growth of T. modestus during the early juvenile period.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. 곽우석∙박대원. 2006. 볼락, Sebastes inermis 자∙치어의 성장에 따른 소화효소 활성 변화. 한국양식학회지, 19: 125-132.
  2. 김익수∙최 윤∙이충열∙이용주∙김병직∙김지현. 2005. 원색한국어류대도감. 교학사, 서울, pp. 495-499.
  3. 박상언∙임한규∙한현섭∙이종하∙임영수∙이종관∙이상민. 2003. 찰가자미, Micromus achne 자어의 성장과 발달에 따른 소화효소 활성의 변화. 한국양식학회지, 16: 233-239.
  4. Abi-Ayad, A. and P. Kestemont. 1994. Comparison of the nutritional status of goldfish (Carassius auratus) larvae fed with live, mixed or dry diet. Aquaculture, 128: 163-176. https://doi.org/10.1016/0044-8486(94)90111-2
  5. Bolasina, S., A. Pérez and Y. Yamashita. 2006. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture, 252: 503-515. https://doi.org/10.1016/j.aquaculture.2005.07.015
  6. Blaxter, J.H.S. 1988. Pattern and variety in development. In: Hoar, W.S. and Randall, D.J. (eds.), Fish Physiology, Academic Press, San Diego, pp. 1-58.
  7. Boulhic, M. and J. Gabaudan. 1992. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus 1758). Aquaculture, 102: 373-396. https://doi.org/10.1016/0044-8486(92)90190-V
  8. Buchet, V., J.L. Zambonino Infante and C.L. Cahu. 2000. Effect of lipid level in a compound diet on the development of red drum Sciaenops ocellatus larvae. Aquaculture, 184: 339-347. https://doi.org/10.1016/S0044-8486(99)00325-7
  9. Chin, P., J.S. Lee, Y.K. Shin and H.G. Kim. 1998. Biological study on the increment of survival rate during early life cycle in the rockfish, Sebastes schlegeli (Teleosti; Scorpaenidae). III. Ultrastructure of the adult digestive tract. Korean J. Ichthyol., 10: 115-127. (in Korean)
  10. Dabrowski, K.R. 1984. The feeding of fish larvae: present ‘state of the art’ and perspectives. Reproduction, Nutrition, Development, 24: 807-833. https://doi.org/10.1051/rnd:19840701
  11. Douglas, S.E., A. Gawlicka, S. Mandala and J.W. Gallant. 1999. Ontogeny of the stomach in winter flounder: characterization and expression of the pepsinogen and proton pump genes and determination of pepsin activity. J. Fish Biol., 55: 897-915. https://doi.org/10.1111/j.1095-8649.1999.tb00729.x
  12. Harada, E. 1962. A contribution to the biology of the black rockfish, Sebastes inermis Cuvier et Valenciennes. Publ. Seto. Mar. Biol. Lab., 10: 307-361.
  13. Hjelmeland, K., I. Huse, T. Jørgensen, G. Molvik and J. Raa. 1984. Trypsin and trypsinogen as indices of growth and survival potential of cod (Gadus morhua L.) larvae. In: Dahl, E., Danielssen, D.S., Moksness, E. and Solemdal, P. (eds.), The Propagation of Cod Gadus morhua L. Arendal: Flødevigen Rapportserie, pp. 189-202.
  14. Holt, G.J. and F. Sun, 1991. Lipase activity and total lipid content during early development of red drum Sciaenops ocellatus. European Aquaculture Society, Special Publication, 15: 30- 33.
  15. Kawai, S. 1972. Studies on the digestive enzymes of fishes with special references to carbohydrates. Ph.D. Thesis, Kyoto Univ., pp. 1-44. (in Japanese)
  16. Lee, J.S. and P. Chin. 1995. Morphology and histochemical characteristics of the alimentary tract in surf pearch, Ditrema temmincki. Korean J. Ichthyol., 7: 140-149. (in Korean)
  17. Lee, J.S., K.S. Jeong and S.H. Huh. 1998. Internal morphology and histochemistry of the digestive tract in the spotted sea bass, Lateolabrax sp. Bull. Fish. Sci. Inst. Yosu Nat'l Univ., 7: 105-113. (in Korean)
  18. Ma, H., C. Cahu, J. Zambonino, H. Yu, Q. Duan, M. Le Gall and K. Mai. 2005. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture, 245: 239-248. https://doi.org/10.1016/j.aquaculture.2004.11.032
  19. Miwa, S., K. Yamano and Y. Inui. 1992. Thyroid hormone stimulatesgastric development in flounder larvae during meta-morphosis. J. Exp. Zool., 261: 424-430. https://doi.org/10.1002/jez.1402610409
  20. Miyasita, S., K. Kato, Y. Sawada, O. Murata, Y. Ishitani, K. Shimizu, S. Yamamoto and H. Kumai. 1998. Development of digestive system and digestive enzyme activities of larval and juvenile Bluefin tuna, Thunnus thynnus, reared in the laboratory. Suisanozoshoku, 46: 111-120.
  21. Murray, H.M., J.W. Gallant, J.C. Pérez-Casanova, S.C. Johnson and S.E. Douglas. 2003. Ontogeny of lipase expression in winter flounder. J. Fish Biol., 62: 816-833. https://doi.org/10.1046/j.1095-8649.2003.00067.x
  22. O'Connell, C.P. 1981. Development of organ systems in the northern anchovy Engraulis mordax, and other teleosts. Am. Zool., 21: 429-446.
  23. Oozeki, Y. and K.M. Bailey 1995. Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma. Mar. Biol., 122: 177-186.
  24. Pedersen, B.H., E.M. Nilssen and K. Hjelmeland. 1987. Variations in the content of trypsin and trypsinogen in larval herring (Clupea harengus) digesting copepod nauplii. Mar. Biol., 94: 171-181. https://doi.org/10.1007/BF00392929
  25. Senger, H., V. Storch, M. Reinecke and W. Kloas. 1994. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar. Biol., 119: 471-486. https://doi.org/10.1007/BF00347544
  26. Tanaka, M. 1969. Studies on the structure and function of the digestive system in teleost larvae-I. Development of the digestive system during prelarval stage. Jpn. J. Ichthy., 16: 1-9.
  27. Tanaka, M. 1973. Studies on the structure and function of the digestive system of teleost larvae. Ph.D. thesis, Kyoto University, Kyoto, Japan, 134pp.
  28. Ueberschär, B. and C. Clemmesen. 1992. A comparison of the nutritional condition of herring larvae as determined by two biochemical methods-tryptic enzyme activity and RNA/DNA ratio measurements. ICES J. Mar. Sci., 49: 245-249. https://doi.org/10.1093/icesjms/49.2.245
  29. 渡憲一. 2007. オにオコゼInimicus japonicus の成長と成熟 にする究. 宮崎大. 博士位論文. 149pp.
  30. 水戶敏. 1966. 日本海洋プランクトン圖鑑, 第7卷魚卵∙稚魚. 蒼洋社, 63pp.
  31. 安永義楊. 1972.ヒラメ稚仔消化器官の達について.東海水報, 69: 75-89.
  32. 全普∙落合明. 1973. 仔稚魚期におけるぶりの消化管の構造と機能の達に就いて. 日水誌, 39: 923-930.
  33. 田村保, 1991. 消化吸收. 田村保編, 魚類生理學槪論, 恒星社厚生閣, 東京, pp. 84-103.
  34. 中村陽子∙田中克∙ 海忠久. 1992. サワラの仔稚魚期における消化管の達. 平成4 年度日本水産春期大講演要旨集,p. 201.
  35. 川合眞一郞. 1975. 消化酵素. 日本水産學會編, 稚魚“攝食”發育. 恒星社厚生閣, 東京, pp. 30-40.
  36. 川合眞一郞. 1995. 栽培漁業技術系化事業基礎理論コ一ステキスト集, 東京, 36pp.
  37. 田中克. 1975. 稚魚の消化系. 日本水産學會編, 稚魚“攝食”發育. 恒星社厚生閣, 東京, pp. 7-23.