Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent

목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향

  • Kang, In-Aeh (Forest Resources Utilization Division, Korea Forest Research Institute) ;
  • Lee, Sun-Young (Forest Resources Utilization Division, Korea Forest Research Institute) ;
  • Doh, Geum-Hyun (Forest Resources Utilization Division, Korea Forest Research Institute) ;
  • Chun, Sang-Jin (Forest Resources Utilization Division, Korea Forest Research Institute) ;
  • Yoon, Seung-Lak (Jinju National University, Department of Forest Products Engineering)
  • 강인애 (국립산림과학원 녹색자원이용부) ;
  • 이선영 (국립산림과학원 녹색자원이용부) ;
  • 도금현 (국립산림과학원 녹색자원이용부) ;
  • 전상진 (국립산림과학원 녹색자원이용부) ;
  • 윤승락 (진주산업대학교 인테리어재료공학과)
  • Received : 2009.06.03
  • Accepted : 2009.07.20
  • Published : 2009.11.25

Abstract

The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.

본 연구에서는 다른 목재수종과 다른 입자크기의 목분 및 상용화제를 첨가한 Wood Plastic Composites (WPC)를 제조한 후 다양한 물성을 평가하였다. 먼저 3가지 다른 수종으로부터 얻은 목분의 화학조성분의 함량이 화학분석으로부터 얻어졌다. 낙엽송(Larix kaempferi Lamb.), 상수리(Quercus accutisima Carr.), 다릅나무(활엽수, Maackia amuresis Rupr. et Maxim)로부터 40~60 mesh와 80~100 mesh의 목분을 제조하여 열가소성 폴리머의 일종인 폴리프로필렌(polypropylene)에 용융 압출 및 사출하여 복합재를 제조한 후 인장강도, 휨강도, 충격강도 및 현미경 분석을 수행하였다. 알파 셀룰로오스는 상수리나무가 43.6%, 다릅나무가 41.3%, 낙엽송이 36.2%였다. 리그닌의 함량은 낙엽송이 31.6%로 가장 높았으며, 상수리나무가 24.4%로 가장 낮았다. 추출물의 함량은 낙엽송이 8.5%, 다릅나무와 상수리나무는 각각 4.4%와 3.9%였다. 알파 셀룰로오스의 함량이 증가하고 리그닌과 추출물의 함량이 감소할수록, WPC의 인장 및 휨강도 특성이 높았다. 같은 목분의 첨가량에서 작은 입자크기의 목분(80~100 mesh)이 큰 입자크기의 목분(40~60 mesh)에 비하여 WPC의 인장 및 휨강도 특성이 크게 높았다. WPC의 충격강도는 목재수종에 따른 영향이 적었으나, 입자의 크기가 큰 목분을 첨가한 WPC의 충격강도가 대체적으로 높았다. 상용화제인 Maleated polypropylene (MAPP)의 첨가는 수종과 다른 입자크기에 관계없이 인장강도, 휨강도 및 충격강도를 증가시켰다. 현미경 분석 결과, MAPP의 첨가에 의해 목분과 PP수지 간의 계면 결합력이 개선됨을 확인할 수 있었다.

Keywords

References

  1. American Society of Testing Materials. Standard test methods for tensile properties of plastics. ASTM D-638. Philadelphia, PA: ASTM; 2000
  2. American Society of Testing Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D-790. Philadelphia, PA: ASTM; 2000
  3. American Society of Testing Materials. Standard test methods for impact resistance of plastics and electrical insulating materials. ASTM D-256. Philadelphia, PA: ASTM; 2000
  4. Coutinho, F. M. B., T. H. S. Costa, and D. L. Carvalho. 1997. Polypropylene-wood fiber composites: Effect of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science. 65: 1227~1235 https://doi.org/10.1002/(SICI)1097-4628(19970808)65:6<1227::AID-APP18>3.0.CO;2-Q
  5. Fengel, D. and G. Wegne. 1983. Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany
  6. Karian, H. G. 2004. Handbook of polypropylene and polypropylene composites, Marcel Dekker, Inc., New York, U.S.A
  7. Kim, B. S., B. H. Chun, W. I. Lee, and B. S. Hwang. 2009. Effect of Plasma Treatment on the Wood Flour for Wood Flour/PP Composites. Journal of Thermoplastic Composite Materials. 22: 21~28 https://doi.org/10.1177/0892705708091604
  8. Kim, H. S., H. S. Yang, and H. J. Kim. 2005. Biodegradability and mechnical properties of agroflour-filled polybutylene succinate biocomposites. Journal of Applied Polymer Science. 97: 1513~1521 https://doi.org/10.1002/app.21905
  9. Kim, J. W., D. P. Harper, and A. M. Taylor. 2008. Effect of wood species on water absorption and durability of wood-plastic composites. Wood and Fiber Science. 40: 519~531
  10. Lee, S. Y., H. S. Yang, H. J. Kim, C. S. Kim, B. S. Kim, and J. N. Lee. 2004. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures. 65: 459~469 https://doi.org/10.1016/j.compstruct.2003.12.007
  11. Lee, S. Y., I. A. Kang, G. H. Doh, H. G. Yoon, B. D. Park, and Q. Wu. 2008. Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. Journal of Thermoplastic Composite Materials. 21: 209~223 https://doi.org/10.1177/0892705708089473
  12. Lee, S. Y., I. A. Kang, B. S. Park, G. H. Doh, and B. D. Park. 2009a. Effect of filler and coupling agent on the properties of bamboo fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites. (In-Press) https://doi.org/10.1177/0731684408094070
  13. Lee, S. Y., S. J. Chun, G. H. Doh, I. A. Kang, S. Lee, and K. H. Paik. 2009b. Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. Journal of Composite Materials. 43(15): 1639~1657 https://doi.org/10.1177/0021998309339352
  14. Lin, Q., X. Zhou, G. Dai, and Y. Bi. 2002. Some studies on mechanical properties of wood flour/continuous glass mat/polypropylene composite. Journal of Applied Polymer Science. 85: 536$\sim$544 https://doi.org/10.1002/app.10591
  15. Maiti, S. N. and K. Singh. 1986. Influence of wood flour on the mechanical properties of polyethylene. Journal of Applied Polymer Science. 32: 4285~4289 https://doi.org/10.1002/app.1986.070320341
  16. Oksman, K., H. Lindberg, and A. Holmgren. 1998. The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. Journal of Applied Polymer Science, 69: 201~209 https://doi.org/10.1002/(SICI)1097-4628(19980705)69:1<201::AID-APP23>3.0.CO;2-0
  17. Schlechter, M. 2004. Plastic wood: Technologies, Market, Business Communications Co., Inc., Norwalk, CT, U.S.A
  18. Son, J. I., H. S. Yang, and H. J. Kim. 2004. Physicomechanical properties of paper sludge-thermoplastic polymer composites. Journal of Thermoplastic Composite Materials. 17: 509~522 https://doi.org/10.1177/0892705704038471
  19. Varghese, S., B. Kuriakose, and S. Thomas. 1994. Stress relaxation in short sisal-fiber-reinforced natural rubber composites, Journal of Applied Polymer Science. 53: 1051~1060 https://doi.org/10.1002/app.1994.070530807
  20. Wolcott, M. P. 2003. Production methods and platforms for wood plastics. Non-Wood Substitutes for Solid Wood Products Conference, Melbourne, Australia
  21. Yang, H. S., M. P. Wolcott, H. S. Kim, and H. J. Kim. 2005. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. Journal of Thermal Alalysis and Calorimetry. 82: 157~160 https://doi.org/10.1007/s10973-005-0857-5
  22. 최성우, 김희수, 이병호, 김현중, 안세희. 2005. Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경친화형 바이오복합재의 가공성. 목재공학. 33(6): 55~62