DOI QR코드

DOI QR Code

Effects of $Ca^{2+}$ and $HCO_3{^-}$ on Capacitation, Hyperactivation and Protein Tyrosine Phosphorylation in Guinea Pig Spermatozoa

  • Huang, Jing-yan (College of Animal Science, Nanjing Agricultural University) ;
  • Wang, Gen-lin (College of Animal Science, Nanjing Agricultural University) ;
  • Kong, Li-juan (College of Animal Science, Nanjing Agricultural University)
  • 투고 : 2008.05.05
  • 심사 : 2008.07.27
  • 발행 : 2009.02.01

초록

In our previous report, we demonstrated that the tyrosine phosphorylation of sperm proteins (TPSP) of guinea pig was associated with capacitation and hyperactivation (CAHA), and $Ca^{2+}$ and ${HCO_3}^-$ were required for the initiation of CAHA and increasing the TPSP. The aim of this study was to further investigate the mechanism underlying the above events. The results showed that addition of cAMP agonists, dibutyryl-cAMP (db-cAMP) and isobutyl-methylxantine (IBMX), to ${HCO_3}^-$ -free medium significantly increased CAHA to the normal level (when sperm were incubated in TALP). Although addition of the cAMP agonists to $Ca^{2+}$-free medium increased CAHA, the percentages of hyperactivated and capacitated sperm were still significantly lower than the normal level. Compared with ${HCO_3}^-$ -free or $Ca^{2+}$-free medium, TPSP was increased when db-cAMP and IBMX were added in the media. H-89, a specific inhibitor of protein kinase A (PKA), inhibited CAHA in a dose-dependent manner and totally blocked TPSP. These results confirm a previous observation that $Ca^{2+}$ and ${HCO_3}^-$ regulated CAHA and TPSP in a cAMP/PKA pathway, and support an interation between TPSP and CAHA of sperm. Besides the cAMP/PKA pathway, $Ca^{2+}$ might have also played a role in regulating CAHA by other pathways since the normal level of CAHA did not recover by adding cAMP agonists in the media.

키워드

참고문헌

  1. Anil, J., A. K. Mathur, S. M. K. Naqvi and J. P. Mittal. 2006, Influence of osmolality of complete semen extender on motion characteristics of frozen-thawed ram spermatozoa, Asian-Aust. J. Anim. Sci. 19:1716-1721
  2. Bajpai, M. and G. F. Donce. 2003, Involvement of tyrosine kinase and cAMP-dependent kinase cross-talk in the regulation of human sperm motility, Reprod. 126:183-195 https://doi.org/10.1530/rep.0.1260183
  3. Baker, M. A., L. Hetherington, H. Ecroyd, S. D. Roman and R. J. Aitken. 2004,Analysis of mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated capacitation, J. Cell Sci. 117:211-222 https://doi.org/10.1242/jcs.00842
  4. Buck, J., M. L. Sinclair, Lissy Schapal, M. J. Cann and L. R. Levin. 1999, Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals, Proc. Natl. Acad. Sci. USA.96:79-84 https://doi.org/10.1073/pnas.96.1.79
  5. Grasa, P., J. A. Cebrián-Pérez and T. Mui$\tilde{n}$o-Blanco. 2006. Signal transduction mechanisms involved in in vitro ram sperm capacitation. Reprod. 132:721-732 https://doi.org/10.1530/rep.1.00770
  6. Hannah, L., Galantino-Homer, P. E. Visconti and G. S. Kopf. 1997, Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3',5'-monophosphatedependent pathway, Biol. Reprod. 56:707-719 https://doi.org/10.1095/biolreprod56.3.707
  7. Harayama, H. and S. Kato. 2001, Factors regulating changes of head-to-head agglutinability in boar spermatozoa during epididymal transit and capacitation in vitro, Asian-Aust. J. Anim. Sci. 14:1196-1202
  8. Harrison, R. A. and N. G. Miller. 2000, cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm, Mol. Reprod. Dev. 55:220-228 https://doi.org/10.1002/(SICI)1098-2795(200002)55:2<220::AID-MRD12>3.0.CO;2-I
  9. Jha, K. N. and S. Shivaji. 2002, Protein serine and threonine phosphorylation, hyperactivation and acrosome reaction in in vitro capacitated hamster spermatozoa, Mol. Reprod. Dev.63:119-130 https://doi.org/10.1002/mrd.10152
  10. Kong, L. J., B. Shao, G. L. Wang, T. T. Dai, L. Xu and J. Y. Huang. 2008, Capacitation-associated changes in protein-tyrosinephosphorylation, hyperactivation and acrosome reaction in guinea pig sperm, Asian-Aust. J. Anim. Sci. 21:181-189
  11. Kulanand, J. and S. Shivaji. 2001, Capacitation-associated changes in protein tyrosine phosphorylation, hyperactivation and acrosome reaction in hamster spermatozoa, Andrologia. 33:95-104 https://doi.org/10.1046/j.1439-0272.2001.00410.x
  12. Leclerc, P., E. de Lamirande and C. Gagnon. 1998, Interaction between Ca2+, cyclic 3', 5' adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation, J. Androl. 19:434-443
  13. Lefiever, L., K. N. Jha, E. Delamirande, P. E. Visconti and C. Gagnon. 2002,Activation of protein kinase A during human sperm capacitation and acrosome reaction, J. Androl. 23:709-716
  14. Luconi, M., I. Porazzi, P. Ferruzzi, S. Marchiani, G. Forti and E. Baldi. 2005, Tyrosine phosphorylation of the A kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate, Biol. Reprod 72:22-32 https://doi.org/10.1095/biolreprod.104.032490
  15. Luconi, M., C. Krausz, G. Forti and E. Baldi. 1996, Extracellular calcium negatively modulates tyrosine phosphorylation and tyrosine kinase activity during capacitation of human spermatozoa, Biol. Reprod. 55:207-216 https://doi.org/10.1095/biolreprod55.1.207
  16. Marquez, B. and S. S. Suarez. 2004, Different signaling pathways in bovine sperm regulate capacitation and hyperactivation, Biol. Reprod. 70:1626-1633 https://doi.org/10.1095/biolreprod.103.026476
  17. Pietrobon, E. O., L. A. Dominguez, A. E. Vincentia, M. H. Burgos and M. W. Fornes. 2001, Detection of the mouse acrosome reaction by acid phosphatase. Comparison with chlortetracycline and electron microscopy, Andrologia. 22:96-103
  18. Si, Y. and M. Okuno. 1999, Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation, Biol. Reprod. 61:240-246 https://doi.org/10.1095/biolreprod61.1.240
  19. Tardif, S., C. Dube and J. L. Bailey. 2003, Porcine sperm capacitation and tyrosine kinase activity are dependent on bicarbonate and calcium but protein tyrosine phosphorylation is only associated with calcium, Biol. Reprod. 68:207-213 https://doi.org/10.1095/biolreprod.102.005082
  20. Visconti, P. E., J. L. Bailey, G. D. Moore, D. Pan, P. Olds-Clarke and G. S. Kopf. 1995, Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein phosphorylation, Develop. 121:1129-1137 https://doi.org/10.1186/1477-7827-2-75
  21. Visconti, P. E., G. D. Moore, J. L. Bailey, Pierre Leclerc, S. A. Connors, Dieyun Pan, Patricia Olds-Clarke and G. S. Kopf. 1995, Capacitation of mouse spermatozoa II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMPdependent pathway, Develop. 121:1139-1150 https://doi.org/10.1095/biolreprod.103.026476
  22. Visconti, P. E., L. R. Johnson, M. Oyaski, M. Fornes, S. B. Moss, G. L. Gerton and G. S. Kopf. 1997, Regulation, localization, and anchoring of protein kinase a subunits during mouse sperm capacitation, Dev. Biol. 192:351-363 https://doi.org/10.1006/dbio.1997.8768
  23. Visconti, P. E. and G. S. Kopf. 1998, Regulation of protein phosphorylation during sperm capacitation, Biol. Reprod.59:1-6 https://doi.org/10.1095/biolreprod59.1.1
  24. Yanagimachi, R. 1994, Mammalian fertilization. In: Physiology of reproduction (Ed. E. N. J. Knobil). Raven Press, New York. pp.189-317
  25. Zhang, Z. H., W. Y. Chen and Q. X. Shi. 2000, Effects of GABA and P4 on capacitation in human and guinea pig spermatozoa in vitro, Acta Physiol. Sin. 3:179-184

피인용 문헌

  1. Role of Ca2+ in the IVM of spermatozoa from the sterlet Acipenser ruthenus vol.29, pp.7, 2017, https://doi.org/10.1071/RD16145