Recent Studies on New Value-added Glycerol Derivatives

글리세롤 유도체의 최근 연구 동향

  • 박승규 (호서대학교 화학공학과) ;
  • 랑문정 (배재대학교 분자과학부)
  • Received : 2009.06.12
  • Accepted : 2009.07.05
  • Published : 2009.08.10

Abstract

High oil price and biodiesel expansion lead the surplus of glycerol in the market. Glycerol has been used as a raw material itself at petroleum chemistry, paint, tobacco, household products and cosmetics in the conventional market. Recently, many research to find new applications of glycerol as a low-cost feedstock for functional derivatives have led to the introduction of a number of selective processes for converting glycerol into commercially value-added products. The recent studies on the development of new value-added glycerol derivatives will be reviewed.

오일 가격의 폭등에 따른 바이오디젤 사용량의 증가로 인해 글리세롤 부산물의 공급과잉이 유발되었다. 원래 글리세롤은 석유화학,페인트,담배, 생활용품 및 화장품 분야에 원료자체로써 사용되어 왔다. 최근에는 글리세롤을 값싼 원료로 사용하여 고부가가치의 기능성 물질을 개발하는 응용 연구를 통해 고부가가치의 유도체 물질로 상용화되는 사례가 많이 보고되고 있다. 본 총설에서는 글리세롤을 원료로 사용하여 새로운 고부가 글리세롤 유도체로 개발한 연구동향을 검토해 보았다.

Keywords

References

  1. M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, and C. D. Pina, Angew. Chem. Int. Ed., 46, 4434 (2007) https://doi.org/10.1002/anie.200604694
  2. J. Bozell, Oleochemicals as a Feedstock for Biorefinery, National Renewable Energy Laboratory, August 18 (2004)
  3. H. Noureddini, W. R. Dailey, and B. A. Hunt, Production of ethers of glycerol from clued glycerol the by-product of biodiesel pro–duction, Chemical and Biomolecular Engineering Research and Publications Papers in Biomaterials (1998)
  4. 國際商業, June, 131 (2007)
  5. ICIS pricing (2007), http://www.icispricing.com
  6. K. S. Tyson, Biodiesel R&D Potential, National Renewable Energy Lab. Montana Biodiesel Workshop (2003)
  7. P&G News Release, December (2004)
  8. S. Claude, Fett/Lipid, 101, 101 (1999) https://doi.org/10.1002/(SICI)1521-4133(199903)101:3<101::AID-LIPI101>3.0.CO;2-4
  9. R. Ciriminna, and M. Pagliaro, Adv. Synth. Catal. 345, 383 (2003) https://doi.org/10.1002/adsc.200390043
  10. S. D. Gulen, M. Lucas, and P. Claus, Catal. Today, 102, 166 (2005) https://doi.org/10.1016/j.cattod.2005.02.033
  11. P. Fordham, M. Besson, and P. Gallezot, Applied Catal. A, 133, L179 (1995) https://doi.org/10.1016/0926-860X(95)00254-5
  12. R. Garcia, M. Besson, and P. Gallezot, Applied Catal. A, 127, 165 (1995) https://doi.org/10.1016/0926-860X(95)00048-8
  13. W. C. Ketchie, M. Murayama, and R. J. Davis, Journal of catalysis, 250, 264 (2007) https://doi.org/10.1016/j.jcat.2007.06.011
  14. R. Ciriminna, G. Palmisano, C. D. Pina, M. Rossi, and M. Pagliaro, Tetrahedron Letters, 47, 6993 (2006) https://doi.org/10.1016/j.tetlet.2006.07.123
  15. H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi, and Y. Inaya, Applied Catal. A, 96, 217 (1993) https://doi.org/10.1016/0926-860X(90)80011-3
  16. H. Kimura, J. Polym. Sci., 34, 3595 (1996) https://doi.org/10.1002/(SICI)1099-0518(199612)34:17<3595::AID-POLA15>3.0.CO;2-9
  17. H. Kimura, J. Polym. Sci., 36, 195 (1998) https://doi.org/10.1002/pol.1959.1203613016
  18. U. S Patent 5308365 (1994)
  19. U. S Patent 5476971 (1995)
  20. K. Klepacova, D. Mravec, E. Hahekova, and M. Bajus, Petroleum and Coal, 45, 54 (2003)
  21. K. Klepacova, D. Mravec, and M. Bajus, Appl. Catal. A, 294, 141 (2005) https://doi.org/10.1016/j.apcata.2005.06.027
  22. U. S Patent 7141102 B2 (2006)
  23. U. S Patent 0038159 A1 (2006)
  24. U. S Patent 0244312 A1 (2005)
  25. U. S Patent 0164470 A1 (2003)
  26. T. Miyazawa, Y. Kusunoki, K. Kunimori, and K. Tomishige, J. Catal. 240, 213 (2006) https://doi.org/10.1016/j.jcat.2006.03.023
  27. M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin, and G. L. Suppes, Appl. Catal. A, 281, 225 (2005) https://doi.org/10.1016/j.apcata.2004.11.033
  28. U. S Patent 5387720 (1995)
  29. E. Tsukuda, S. Sato, R. Takahashi, and T. Sodesawa, J. Catalysis, 8, 1349 (2007)
  30. S. H. Chai, H. P. Wang, Y. Liang, and B. Q. Xu, J. Catalysis, 250, 342 (2007) https://doi.org/10.1016/j.jcat.2007.06.016
  31. R. R. Soares, D. A. Simonetti, and J. A. Dumesic, Angew. Chem. Int. Ed., 45, 3982 (2006) https://doi.org/10.1002/anie.200600212
  32. D. A. Simonetti, J. R. Hansen, E. L. Kunkes, R. R. Soares, and J. A. Dumesic, Green Chemistry (2007)
  33. Chemical Toxicology, July 13th, News (2007)
  34. K. Nalampang and A. F. Johnson, Polymer, 22, 6103 (2003)
  35. C. G. Villegas, J. Biotechnology, 131S, S102 (2007)
  36. M. H. Cho, S. I. Joen, S. H. Pyo, S. Mun, and J. H. Kim, Process Biochemistry, 41, 739 (2006) https://doi.org/10.1016/j.procbio.2005.11.013
  37. A. Sunder, R. Mulhaupt, R. Haag, and H. Frey, Macromolecules, 33, 253 (2000) https://doi.org/10.1021/ma9915881
  38. A. Sunder, R. Hanselmann, H. Frey, and R. Mulhaupt, Macromolecules, 32, 4240 (1999) https://doi.org/10.1021/ma990090w
  39. Japan Patent 特開2001-151969
  40. J. M. Clacens, Y. Pouilloux, and J. Barrault, Applied Catalysis A, 227, 181 (2002) https://doi.org/10.1016/S0926-860X(01)00920-6
  41. U. S Patent 6162774 (2000)
  42. U. S Patent 6949492 B2 (2005)