Abstract
Micro-scale copper bumps for build-up PCB were electroplated using a pulse-reverse method. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance. The electroplated micro-bumps were characterized using various analytical tools, including an optical microscope, a scanning electron microscope and an atomic force microscope. Surface analysis results showed that the electroplating uniformity was viable in a current density range of 1.4-3.0 A/$dm^2$ at a pulse-reverse ratio of 1. To investigate the brightener concentration on the electroplating properties, the current density value was fixed at 3.0 A/$dm^2$ as a dense microstructure was achieved at this current density. The brightener concentration was varied from 0.05 to 0.3 ml/L to study the effect of the concentration. The optimum concentration for micro-bump electroplating was found to be 0.05 ml/L based on the examination of the electroplating properties of the bump shape, roughness and grain size.