GPS water vapor estimation modeling with high accuracy by consideration of seasonal characteristics on Korea

한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링

  • 송동섭 (미국 Ohio State University SPIN Laboratory)
  • Published : 2009.10.31

Abstract

The water vapor weighted vertically mean temperature(Tm) models, which were developed by the consideration of seasonal characteristics over the Korea, was used in the retrieval of precipitable water vapor (PWV) from GPS data which were observed at four GPS permanent stations. Since the weighted mean temperature relates to the water vapor pressure and temperature profile at a site, the accuracy of water vapor information which were estimated from GPS tropospheric wet delay is proportional to the accuracy of the weighted mean temperature. The adaption of Korean seasonal weighted mean temperature model, as an alternative to other formulae which are suggested from other nation, provides an improvement in the accuracy of the GPS PWV estimation. Therefore, it can be concluded that the seasonally appropriate weighted mean temperature model, which is used to convert actual zenith wet delay (ZWD) to the PWV, can be more reduced the relative biases of PWV estimated from GPS signal delays in the troposphere than other annual model, so that it would be useful for GPS PWV estimation with high accuracy.

본 연구에서는 GPS 관측 데이터로부터 가강수량을 복원하는 과정에 있어서 한국의 계절별 특성을 고려한 가중 평균 기온 모델(Tm)을 개발하고 4개소의 GPS 상시관측소에 대하여 이를 적용하였다. 가중 평균 기온은 지역의 수증기 압력과 기온 프로파일에 관계하기 때문에, GPS 대류권 습윤 지연으로부터 추정한 수증기 정보의 정확도는 가중 평균 기온 추정 정확도에 비례하게 된다. 다른 국가에서 제시한 모델들과 비교하여 한국의 계절별 가중 평균 기온 모델의 적용이 GPS 가강수량 추정 정확도를 개선시킬 수 있다는 결과를 제공하였다. 따라서 실제 습윤 지연량을 가강수량으로 환산하는 단계에서 계절적으로 적합한 가중 평균 기온 모델은 다른 모델들에 비하여 대류권에서의 GPS 신호 지연으로부터 가강수량 추정의 상대적 편의 제거 효과가 크기 때문에 고정확도 수증기량 추정에 유용하다고 판단된다.

Keywords

References

  1. 두산세계대백과 (2006), 기상학적 계절구분, 엔싸이버, http://www.encyber.com
  2. 송동섭 (2007), GPS 관측데이터 정밀 해석을 통한 가강수량 추정 정확도 향상, 박사학위논문, 성균관대학교, pp. 90-120
  3. 하지현, 박관동 (2008), GPS 가강수량 결정을 위한 한국형 평균온도식 비교, 한국우주과학회지, 한국우주과학회, 제 25권, 제 4호, pp. 425-434
  4. Bevis, M., S. Businger, T. Herring, C. Rocken, R. Anthes, and R. Ware (1992), GPS meteorology: Remote Sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., Vol. 97, pp. 15,787-15,801
  5. Brunner, F., W. Welsch (1993), Effect of the Troposphere on GPS Measurements, GPS World, Vol. 4, No. 1, pp. 42-51
  6. Cao, Y., F. Zheng, Y. Xie, and Y. Bi (2008), Impact of the Weighted Mean Temperature on the Estimation of GPS Precipitable Water Vapor, Microwave and Millimeter Wave Technology, international ICMMT2008 Proceedings, Vol. 2, pp. 799-801
  7. Davis, J. L., T.A. Herring, I.I. Sharpiro, A.E.E. rogers, and G. elgered (1985), Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length, Radio Science, Vol. 20, No. 6, pp. 1593-1607 https://doi.org/10.1029/RS020i006p01593
  8. Feng, Y., Z. Bai, P. Fang, and A. Williams (2001), GPS Water Vapour Experimental Results From Observations of the Australian Regional GPS Network (ARGN), A Spatial Odyssey : 42nd Australian Surveyors Congress
  9. Gregorius, T. (1996), GIPSY-OASIS II, How it Works, Department of Geomatics, University of Newcastle upon Tyne
  10. Kalman, R. and R. Bucy (1961), A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME, Vol. 95, No. 83D
  11. Kobayashi, H. (1999), Examination of precipitable water vapor from GPS tropospheric delay in the tropics, Ms. S. dissertation to the University of Tokyo, p. 69
  12. Liou, Y. A, Y. T. Teng (2001), Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes, Journal of Applied Meteorology, Vol. 40,pp. 5-15 https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
  13. Mendes, V. B. (1999), Modeling the Neutral-atmosphere propagation Delay in Radiometric Space Techniques, Ph.D. dissertation, Technical Report No. 1999, University of New Brunswick, Frederiction, New Brunswick, Canada
  14. Ohtani, R. (1999), A study on the evaluation of GPS retrieved precipitable water vapor, Ph. D. dissertation to the University of Tokyo, p. 91
  15. Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger (1993), Sensig atmospheric water vapor with the global positioning system, Geophys.Res.Lett., Vol. 20, No. 23, pp. 2631-2634 https://doi.org/10.1029/93GL02935
  16. Ross, R. J. and W. P. Elliot (1996), Tropospheric precipitable water: A radiosond e-based climatology, NOAA Tech. Memo. ERL ARL-219, National Oceanic and Atmos. Admin, Silver Spring, Md, p. 132
  17. Ross, R. J. and S. Rosenfield (1997), Estimating mean weighted temperature of the atmosphere for Global Positioning System applications, J. Geophys.Res., Vol. 102, No. 21, pp. 719-730
  18. Sch\ddot{u}ler, T. (2001), On Ground-Based GPS Tropospheric Delay Estimation, Doctor's Thesis, Studiengang Geosie und Geoinformation, University FAF Munich, Germany
  19. Solbrig, P. (2000), Untersuchungen ber die Nutzung numerischer wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, (In German)
  20. Song, D. S., H. S. Yun, and D. L. Lee (2008), Verification of Accuracy of Precipitable Water Vapour from GPS during Typhoon Rusa, Survey Review, Vol. 40, No. 307, pp. 19-28
  21. Takiguchi, H., T. Kato, H. Kobayashi adn T. Nakaegawa (2000), GPS Observations in Thailand for hydrological applications, Earth Planets and Space, Vol. 52, pp. 913-919 https://doi.org/10.1186/BF03352305
  22. Webb, F. H. and Zumberge, J. F. (1993), An Introduction to th GIPSY/OASIS-II, JPL Publication, Pasadena, Claifornia, D-11088
  23. Yuan, L. L., R. A. Anthes, R. H. Ware, C. Rocken, W. D. Bonner, M. G. Bevis, and S. Businger (1993), Sensing Climate Change Using the Global Positioning System, J. Geophys.Res., Vol. 98, No. D8, pp. 14,925-147,937