• Title/Summary/Keyword: GPS water vapor

Search Result 57, Processing Time 0.018 seconds

Correlation Analysis between GPS Precipitable Water Vapor and Heavy Snowfall on Gangwon Province in Early 2011 (2011년 강원 폭설과 GPS 가강수량의 상관성 분석)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • In this paper, the GPS precipitable water vapor was retrieved by estimating of GPS signal delay in the troposphere during the progress of heavy snowfall on the Gangwon Province, 2011. For this period, the time series analysis between GPS precipitable water vapor and fresh snow depth was accomplished. The time series and the comparison with the GPS precipitable water vapor and the fresh snow depth indicates that the temporal change of two variations is closely related to the progress of the heavy snowfall. Also, the periodicity of GPS precipitable water vapor using the wavelet transform method was showed a similar cycle of saturated water vapor pressure as the limitation of this study span. The result shows that the decrement of GPS precipitable water vapor was conflicted with the increment of fresh snow depth at two sites, Gangneung and Uljin. The correlation between the GPS precipitable water vapor and the saturated water vapor pressure for the event was showed a positive correlation, compare with the non-heavy snowfall periods.

Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province (2014년 강원 폭설동안 GPS 가강수량 탐측)

  • JinYong, Nam;DongSeob, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.305-316
    • /
    • 2015
  • The GPS signal delays in troposphere, which are along the signal path between a transmitting satellite and GPS permanent station, can be used to retrieve the precipitable water vapor. The GPS remote sensing technique of atmospheric water vapor is capable of monitoring typhoon and detecting long term water vapor for tracking of earth’s climate change. In this study, we analyzed GPS precipitable water vapor variations during the heavy snowstorm event occurred in the Yeongdong area, 2014. The results show that the snowfall event were occurring after the GPS precipitable water vapor were increased, the maximum fresh snow depth was recorded after the maximum GPS precipitable water vapor was generated, in Kangneug and Wuljin, respectively. Also, we analyzed that the closely correlation among the GPS precipitable water vapor, the K-index and total index which was acquired by the upper air observation system during this snowstorm event was revealed.

Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR (태풍 에위니아 영향력에서의 GPS 가강수량 변화 분석)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1033-1041
    • /
    • 2006
  • In this study, we calculated a space-time variation of GPS precipitable water vapor using GPS meteorology technique during a progress of the typhoon EWINIAR had made an effect on Korean peninsular at 10 July, 2006. We estimated tropospheric dry delay and wet delay for one hourly using 22 GPS permanent stations and precipitable water vapor was conversed by using surface meteorological data. The Korean weighted mean temperature and air-pressure of versa-reduction to the mean sea level have been used for an accuracy improvement of GPS precipitable water vapor estimation. Finally, we compared MTSAT water vapor image, radar image and precipitable water vapor map during a passage of the typhoon EWINIAR.

GPS water vapor estimation modeling with high accuracy by consideration of seasonal characteristics on Korea (한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.565-574
    • /
    • 2009
  • The water vapor weighted vertically mean temperature(Tm) models, which were developed by the consideration of seasonal characteristics over the Korea, was used in the retrieval of precipitable water vapor (PWV) from GPS data which were observed at four GPS permanent stations. Since the weighted mean temperature relates to the water vapor pressure and temperature profile at a site, the accuracy of water vapor information which were estimated from GPS tropospheric wet delay is proportional to the accuracy of the weighted mean temperature. The adaption of Korean seasonal weighted mean temperature model, as an alternative to other formulae which are suggested from other nation, provides an improvement in the accuracy of the GPS PWV estimation. Therefore, it can be concluded that the seasonally appropriate weighted mean temperature model, which is used to convert actual zenith wet delay (ZWD) to the PWV, can be more reduced the relative biases of PWV estimated from GPS signal delays in the troposphere than other annual model, so that it would be useful for GPS PWV estimation with high accuracy.

Comparative Research of Fog Using the Regular Observation and GPS Integrated Water Vapor (정규관측자료와 GPS 연직누적 수증기량을 이용한 안개에 대한 비교연구)

  • Lee, Jaewon;Cho, Jungho;Baek, Jeongho;Park, Jong-Uk;Park, Chieup
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.417-427
    • /
    • 2008
  • In this paper, we analyzed the physical and thermodynamic characteristics of fog by using the integrated water vapor (IWV) from Global Positioning System (GPS) networks and the regular observation data of meteorological stations in GPS sites. The cases of a radiation and an advection fog were selected as samples, the conversions of water substance from the water vapor to cloud water in fog were detected by the Bulk Water-Continuity Model, and the pattern analysis is adapted on GPS IWV, temperature, wind and relative humidity. Under the specific hypothesis (saturation and stable), GPS IWV could detect quantitatively the phase changing between the water vapor and cloud water content with condensation/evaporation during the formation and dissipation of fog. After it reaches to the saturation, the relative humidity can be a limited indicator for fog. However, GPS IWV can detect the status change of fog even after the saturation. It has indicated that GPS IWV could be a new observing technique for the processes of the fog formation and the dissipation.

Estimation of Water Vapor Vertical Profiles in the Atmosphere Using GPS Measurements (GPS 관측 자료를 이용한 대기 수증기 연직 분포 추정)

  • Ha, Jihyun;Park, Kwan-Dong
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.289-296
    • /
    • 2009
  • Measurements of the three-dimensional water vapor distribution in the atmosphere are important for forecast and analysis of meteorological phenomenon. In this study, two Global Positioning System (GPS) campaign networks were installed in Jeju Island and Kangwon-do to construct the vertical water vapor profile solely based on GPS measurements. We implemented a layer model to get the wet refractivity profile and compared the result with radiosonde measurements. The result showed that the vertical profiles from GPS and radiosonde agree well. The bias, root-mean-square error (RMSE) and standard deviation of GPS wet refractivities compared with radiosonde measurements were in the range of 6.6~11.1 mm $km^{-1}$, 11.9~13.9 mm $km^{-1}$, and 4.3~12.3 mm $km^{-1}$, respectively.

Regional Ts-Tm Relation to Improve GPS Precipitable Water Vapor Conversions

  • Song, Dongseob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • As the retrieval accuracy of PWV estimates from GPS measurements is proportional to the accuracy of water vapor WMT, the WMT model is a significant formulation in the conversion of PWV from the GPS ZWD. The purpose of this study is to develop a MWMT model for the retrieval of highly accurate GPS PWV using the radiosonde measurements from six upper-air observing stations in the region of Korea. The values of 1-hr PWV estimated at four GPS stations during one year are used to evaluate the validity of the MWMT model. It is compared to the PWV obtained from radiosonde data that are located in the vicinity of GPS stations. Intercomparison of radiosonde PWVs and GPS PWVs derived using different WMT models is performed to assess the quality of our MWMT model for Korea. The result in this study indicates that the MWMT model is an effective model to retrieve the enhanced accurate GPS PWV, compared to other GPS PWV derived by Korean annual or global WMT models.

Trend Analysis of GPS Precipitable Water Vapor Above South Korea Over the Last 10 Years

  • Sohn, Dong-Hyo;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2010
  • We analyzed global positioning system (GPS)-derived precipitable water vapor (PWV) trends of the Korea Astronomy and Space Science Institute 5 stations (Seoul, Daejeon, Mokpo, Milyang, Sokcho) where Korea Meteorological Administration meteorological data can be obtained at the same place. In the least squares analysis, the GPS PWV time series showed consistent positive trends (0.11 mm/year) over South Korea from 2000 to 2009. The annual increase of GPS PWV was comparable with the 0.17 mm/year and 0.02 mm/year from the National Center for Atmospheric Research Earth Observing Laboratory and Atmospheric InfraRed Sounder, respectively. For seasonal analysis, the increasing tendency was found by 0.05 mm/year, 0.16 mm/year, 0.04 mm/year in spring (March-May), summer (June-August) and winter (December-February), respectively. However, a negative trend (-0.14 mm/year) was seen in autumn (September-November). We examined the relationship between GPS PWV and temperature which is the one of the climatic elements. Two elements trends increased during the same period and the correlation coefficient was about 0.8. Also, we found the temperature rise has increased more GPS PWV and observed a stronger positive trend in summer than in winter. This is characterized by hot humid summer and cold dry winter of Korea climate and depending on the amount of water vapor the air contains at a certain temperature. In addition, it is assumed that GPS PWV positive trend is caused by increasing amount of saturated water vapor due to temperature rise in the Korean Peninsula. In the future, we plan to verify GPS PWV effectiveness as a tool to monitor changes in precipitable water through cause analysis of seasonal trends and indepth/long-term comparative analysis between GPS PWV and other climatic elements.

Analysis on Characteristics of Radiosonde Bias Using GPS Precipitable Water Vapor

  • Park, Chang-Geun;Baek, Jeong-Ho;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.213-220
    • /
    • 2010
  • As an observation instrument of the longest record of tropospheric water vapor, radiosonde data provide upper-air pressure (geopotential height), temperature, humidity and wind. However, the data have some well-known elements related to inaccuracy. In this article, radiosonde precipitable water vapor (PWV) at Sokcho observatory was compared with global positioning system (GPS) PWV during each summertime of year 2007 and 2008 and the biases were calculated. As a result, the mean bias showed negative values regardless of the rainfall occurrence. In addition, on the basis of GPS PWV, the maximum root mean square error (RMSE) was 5.67 mm over the radiosonde PWV.

GPS PWV Variation Research During the Progress of a Typhoon RUSA (태풍 RUSA의 진행에 따른 GPS PWV 변화량 연구)

  • 송동섭;윤홍식;서애숙
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • Typhoon RUSA, which caused serious damage was passed over in Korea peninsula during 30 August to 1 September, 2002. We estimated tropospheric wet delay using GPS data and meteorological data during this period. Integrated Water Vapor(IWV) gives the total amount of water vapor from tropospheric wet delay and Precipitable Water Vapor(PWV) is calculated the IWV scaled by the density of water. We obtained GPS PWV at 13th GPS permanent stations(Seoul, Wonju. Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). We retrieve GPS data hourly and use Gipsy-Oasis II software and we compare PWV and precipitation. GPS observed PWV time series demonstrate that PWV is, in general, high before and during the occurrence of the typhoon RUSA, and low after the typhoon RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We got very near result as we compare GMS Satellite image with tomograph using GPS PWV and we could present practical use possibility by numerical model for weather forecast.