DOI QR코드

DOI QR Code

Effects of Recombination on the Pathogenicity and Evolution of Pepper mottle virus

  • Jonson, Miranda Gilda (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University) ;
  • Seo, Jang-Kyun (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University) ;
  • Cho, Hong-Soo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Jeong-Soo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University)
  • Published : 2009.12.01

Abstract

The analysis of the full length genome of Korean isolates of Pepper mottle virus (PepMoV) in previous study showed molecular variations and are found to be related to symptom variation and pathogenicity (Kim et al., 2009, Virus Res. 144:83-88). To fully understand the molecular variation of PepMoV in Korea, we further assessed the role of RNA recombination to biological variation and evolution of PepMoV. Full-length genome of a total of 17 Korean-PepMoV and 2 American (CA and FL) isolates were examined for possible detection of genetic recombination using different recombination detections programs and detected 5 and 8 tentative recombination events using RDP3 and Splits Tree4 programs, respectively. Interestingly, tentative recombinants detected such as isolates 57, 134 and 217 were previously identified as severe isolates and 205135 and 205136 as differentiating isolates (Kim et al., 2009, Virus Res. 144:83-88). In addition, recombination was frequently detected in the Vb isolate, the first PepMoV isolate reported in Korea, suggesting significant involvement in the evolution of PepMoV in Korea. These initial results of our recombination analyses among PepMoV isolates in Korea may serve as clues to further investigate the biological variations and evolution of PepMoV brought about by recombination.

Keywords

References

  1. Choi, B. K., Koo, J. M., Ahn, H. J., Yum, H. J., Choi, C. W., Ryu, K. H., Chen, P. and Tolin, S. A. 2005. Emergence of Rsv-resistance breaking Soybean mosaic virus isolates from Korean soybean cultivars. Virus Res. 112:42-51 https://doi.org/10.1016/j.virusres.2005.03.020
  2. Etherington, G. J., Dicks, J. and Roberts, I. N. 2005. Recombination Analysis Tool (RAT): A program for the high-throughput detection of recombination. Bioinformatics 21:278-281 https://doi.org/10.1093/bioinformatics/bth500
  3. Fargette, D., Pinel, A., Traore, O., Ghesquiere, A. and Konate, G. 2002. Emergence of resistance-breaking isolates of Rice yellow mottle virus during serial inoculations. Eur. J. Plant Pathol. 108:585-591 https://doi.org/10.1023/A:1019952907105
  4. Gagarinova, A. G., Babu, M., Stromvik, M. V. and Wang, A. 2008. Recombination analysis of Soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes. Viral. J. 5:143 https://doi.org/10.1186/1743-422X-5-143
  5. Garcla-Arenal, F., Fraile, A. and Malpica, J. M. 2003. Variation and evolution of plant virus populations. Int. Microbiol. 6:225-232 https://doi.org/10.1007/s10123-003-0142-z
  6. Hajimorad, M. R, Eggenberger, A. L. and Hill, J. H. 2003. Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition. Virology 314:497-509 https://doi.org/10.1016/S0042-6822(03)00456-2
  7. Harrison, B. D. 2002. Virus variation in relation to resistance-breaking in plants. Euphytica 124:181-192 https://doi.org/10.1023/A:1015630516425
  8. Huson, D. H. and Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. BioI. Evol. 23:254-267 https://doi.org/10.1093/molbev/msj030
  9. Jenner, C. E., Sanchez, F., Nettleship S. B., Foster G. D., Ponz, F. and Walsh J. A. 2000. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the brassica resistance Gene TuRB01. Mol. Plant-Microbe Interact. 13:1102-1108 https://doi.org/10.1094/MPMI.2000.13.10.1102
  10. Kim, M.-K. Kwak, H.-R., Han, J.-H., Ko, S.-J., Lee, S.-H., Park, J.-W., Jonson, M.-G., Kim, K-H., Kim, J.-S., Choi, H.-S. and Cha, B.-J. 2008. Isolation and characterization of Pepper mottle virus infecting tomato in Korea. Plant Pathol. J. 24:152-158 https://doi.org/10.5423/PPJ.2008.24.2.152
  11. Kim, Y.-J., Jonson, M. G., Choi, H.-S., Ko, S.-J. and Kim, K.-H. 2009. Molecular characterization of Korean Pepper mottle virus isolates and its relationship to symptom variations. Virus Res. 144:83-88 https://doi.org/10.1016/j.virusres.2009.04.003
  12. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948 https://doi.org/10.1093/bioinformatics/btm404
  13. Martin, D. P., Williamson, C. and Posada, D. 2005. RDP2: Recombination detection and analysis from sequence alignments. Bioinformatics 21:260-262 https://doi.org/10.1093/bioinformatics/bth490
  14. Roossinck, M. J. 1997. Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 35:191-209 https://doi.org/10.1146/annurev.phyto.35.1.191
  15. Posada, D. and Crandall, K. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 98:13757-13762 https://doi.org/10.1073/pnas.241370698
  16. Seo, J.-K., Lee, S.-H. and Kim, K.-H. 2009a. Strain-specific cylindrical inclusion protein of Soybean mosaic virus elicits extreme resistance and a lethal systemic hypersensitive response in two resistant soybean cultivars. Mol. Plant-Microbe Interact. 22:1151-1159 https://doi.org/10.1094/MPMI-22-9-1151
  17. Seo, J.-K. Ohshima, K., Lee, H.-G, Son, M.-I., Choi, H.-S., Lee, S.-H., Sohn, S.-H. and Kim, K-H. 2009b. Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology 393:91-103 https://doi.org/10.1016/j.virol.2009.07.007
  18. Shukla, D. D., Ward, C. W. and Brunt, A. A. 1994. The Potyviridae. CAB international, 17 Wallingford, UK
  19. Vance, V. B., Moore, D., Turpen, T. H., Bracker, A. and Hollowell, V. C. 1992. The complete nucleotide sequence of pepper mottle virus genomic RNA: Comparison of the encoded polyprotein with those of other sequenced potyviruses. Virology 191:19-30 https://doi.org/10.1016/0042-6822(92)90162-I
  20. Verhoeven, J. Th., Willemen, T. M. and Roenhorst, J. W. 2002. First report of Pepper mottle virus in tomato. Plant Dis. 86:186 https://doi.org/10.1094/PDIS.2002.86.2.186C
  21. Weiller, G. F. 1998. Phylogenetic profiles: A graphical method for detecting genetic recombinations in homologous sequences. Mol. BioI. Evol. 15:326-335 https://doi.org/10.1093/oxfordjournals.molbev.a025929
  22. Wylie, S. J. and Jones, R. A. C. 2009. Role of recombination in the evolution of host specialization within Bean yellow mosaic virus. Phytopathology 99:512-518 https://doi.org/10.1094/PHYTO-99-5-0512
  23. Worobey, M. and Holmes, E. C. 1999. Evolutionary aspects of recombination in RNA viruses. J. Gen. Viral. 80:2535-2543 https://doi.org/10.1099/0022-1317-80-10-2535

Cited by

  1. Molecular Characterization and Variation of the Broad bean wilt virus 2 Isolates Based on Analyses of Complete Genome Sequences vol.29, pp.4, 2013, https://doi.org/10.5423/PPJ.OA.03.2013.0036
  2. Molecular Evidence of Recombination on Korean Isolates of Tomato yellow leaf curl virus by Nucleotide Transversions and Transitions vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.378
  3. Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences vol.31, pp.4, 2015, https://doi.org/10.5423/PPJ.OA.04.2015.0072