DOI QR코드

DOI QR Code

Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi

  • Min, Ji-Seon (Division of Bio-Resources Technology, Kangwon National University) ;
  • Kim, Kyoung-Su (Agriculture and Life Sciences Research Institute, Kangwon National University) ;
  • Kim, Sang-Woo (Division of Bio-Resources Technology, Kangwon National University) ;
  • Jung, Jin-Hee (Division of Bio-Resources Technology, Kangwon National University) ;
  • Lamsal, Kabir (Division of Bio-Resources Technology, Kangwon National University) ;
  • Kim, Seung-Bin (Department of Chemistry, POSTECH) ;
  • Jung, Moo-Young (School of Technology Management, Ulsan National Institute of Science and Technology) ;
  • Lee, Youn-Su (Division of Bio-Resources Technology, Kangwon National University)
  • Published : 2009.12.01

Abstract

Effects of silver nanoparticles on the phytopathogenic fungal growth were investigated. Fungal phytopathogens, especially for sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, were selected due to their important roles in survival and disease cycle. Tests for the fungal hyphal growth revealed that silver nanoparticles remarkably inhibit the hyphal growth in a dose-dependent manner. Different antimicrobial efficiency of the silver nanoparticle was observed among the fungi on their hyphal growth in the following order, R. solani > S. sclerotiorum > S. minor. Tests for the sclerotial germination growth revealed that the nanoparticles showed significant inhibition effectiveness. In particular, the sclerotial germination growth of S. sclerotiorum was most effectively inhibited at low concentrations of silver nanoparticles. A microscopic observation revealed that hyphae exposed to silver nanoparticles were severely damaged, resulting in the separation of layers of hyphal wall and collapse of hyphae. This study suggests the possibility to use silver nanoparticles as an alternative to pesticides for scleotium-forming phytopathogenic fungal controls.

Keywords

References

  1. Ayers, W. A. and Adams, P. B. 1979. Mycoparasitism of sclerotia of Sclerotinia and sclerotium species by Sporidesmium sclerotivorum. Can. J. Microbial. 25:17-23 https://doi.org/10.1139/m79-003
  2. Bragg, P. D. and Rannie, D. J. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbial. 20:883-889 https://doi.org/10.1139/m74-135
  3. Coley-Smith, J. R. 1979. Survival of plant pathogenic fungi in soil in the absence of host plants. In: Soil-borne plant pathogens, ed. by Schippers, B., and Gams, W. pp. 39-57, Academic Press, London
  4. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., Muthukrishnan, S. and Datta, S. K. 1999. Over-expression of the cloned rice thaumatin-like protein (pr-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98:1138-1145 https://doi.org/10.1007/s001220051178
  5. Dillard, H. R. and Grogan, R. G. 1985. Relationship between sclerotial spatial pattern and density of Sclerotinia minor and the incidence of Jettuce drop. Phytopathology 75:90-94 https://doi.org/10.1094/Phyto-75-90
  6. Elchiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H. and Yacaman, M. J. 2005. Interaction of silver nanoparticles with hiv-1. J. Nanobiotechnol. 3:6 https://doi.org/10.1186/1477-3155-3-6
  7. Feng, Q. L., Wu, J., Chen, G. O., Cui, F. Z., Kim, T. N. and Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52:662-668 https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  8. Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I. and Gu, M. B. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746-750 https://doi.org/10.1002/smll.200700954
  9. Imolehin, E. D. and Grogan, R. G. 1980. Factors affecting survival of sclerotia, and effects of inoculum density, relative position, and distance of sclerotia from the host on infection of lettuce by Sclerotinia minor. Phytopathology 70:1162-1167 https://doi.org/10.1094/Phyto-70-1162
  10. Kawahara, K., Tsuruda, K., Morishita, M. and Uchida, M. 2000. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic condition. Dent. Mater. 16:452-455 https://doi.org/10.1016/S0109-5641(00)00050-6
  11. Marcum, D. B., Grogan, R. G. and Greathead, A. S. 1977. Fungicide control oflettuce drop caused by Sclerotinia sclerotiorum 'minor'. Plant Dis. Rep. 61:555-559
  12. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T. and Yacaman, M. J. 2005. The bactericidal effect of silver nanoparticles. Nanobiotechnology 16:2346-2353 https://doi.org/10.1088/0957-4484/16/10/059
  13. Nel, A, Xia, T., Madler, L. and Li, N. 2003. Toxic potential of materials at the nanolevel. Science 311:622-627 https://doi.org/10.1126/science.1114397
  14. Richards, R. M. 1981. Antimicrobial action of silver nitrate. Microbios 31:83-91
  15. Sabbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Disease. 82:1068-1078 https://doi.org/10.1094/PDIS.1998.82.10.1068
  16. Samuel, U. and Guggenbichler, J. P. 2004. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. IntI. J. Antimicrobial Agents 23S1:S75-S78 https://doi.org/10.1016/j.ijantimicag.2003.12.004
  17. Steadman, J. R. 1979. Control of plant diseases caused by sclerotinia species. Phytopathology 69:904-907 https://doi.org/10.1094/Phyto-69-904
  18. Storz, G. and Imlay, J. A. 1999. Oxidative stress. Curr. Opin. Microbial. 2:188-194 https://doi.org/10.1016/S1369-5274(99)80033-2
  19. Thurman, K. G. and Gerba, C. H. P. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Cri. Rev. Environ. Control. 18:295-315 https://doi.org/10.1080/10643388909388351
  20. Toumeau, D. L. 1979. Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 69:887-890 https://doi.org/10.1094/Phyto-69-887
  21. Yeo, S. Y., Lee, H. J. and Jeong, S. H. 2003. Preparation of nano-composite fibers for permanent antibacterial effect. J. Mater. Sci. 38:2143-2147 https://doi.org/10.1023/A:1023767828656

Cited by

  1. Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review vol.23, pp.1, 2014, https://doi.org/10.1007/s13562-013-0204-z
  2. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils vol.285, 2017, https://doi.org/10.1016/j.geoderma.2016.10.006
  3. In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture vol.150, pp.1-3, 2012, https://doi.org/10.1007/s12011-012-9480-z
  4. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens vol.140, pp.2, 2014, https://doi.org/10.1007/s10658-014-0399-4
  5. Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks 2016, https://doi.org/10.1007/s40011-016-0791-2
  6. A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis vol.81, pp.2, 2012, https://doi.org/10.1016/j.radphyschem.2011.10.004
  7. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks vol.329, 2017, https://doi.org/10.1016/j.taap.2017.05.025
  8. Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0057189
  9. Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26) vol.7, pp.4, 2016, https://doi.org/10.1088/2043-6262/7/4/045014
  10. Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities vol.60, pp.39, 2012, https://doi.org/10.1021/jf302154y
  11. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract vol.5, pp.5, 2015, https://doi.org/10.1016/S2221-1691(15)30373-7
  12. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi vol.40, pp.1, 2012, https://doi.org/10.5941/MYCO.2012.40.1.053
  13. Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera) vol.49, pp.5, 2014, https://doi.org/10.1080/03601234.2014.882168
  14. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-016-1311-2
  15. Green synthesis and characterization of silver (Ag) nanoparticles using neem leaf extract and its antifungal activity against seed borne pathogens in chilli vol.11, pp.1, 2016, https://doi.org/10.15740/HAS/TAJH/11.1/109-113
  16. In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease vol.11, pp.3, 2017, https://doi.org/10.1049/iet-nbt.2015.0121
  17. Integrated nanotechnology for synergism and degradation of fungicide SOPP using micro/nano-Ag3PO4 vol.3, pp.3, 2016, https://doi.org/10.1039/C5QI00186B
  18. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture vol.99, pp.3, 2015, https://doi.org/10.1007/s00253-014-6296-0
  19. Nanoparticulate material delivery to plants vol.179, pp.3, 2010, https://doi.org/10.1016/j.plantsci.2010.04.012
  20. Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions vol.20, pp.4, 2015, https://doi.org/10.1007/s40502-015-0188-x
  21. Tallow amphopolycarboxyglycinate-stabilized silver nanoparticles: new frontiers in development of plant protection products with a broad spectrum of action against phytopathogens vol.3, pp.7, 2016, https://doi.org/10.1088/2053-1591/3/7/075403
  22. Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems vol.142, pp.2, 2015, https://doi.org/10.1007/s10658-015-0608-9
  23. Physiological effects of nanosilver on vegetative mycelium, conidia and the development of the entomopathogenic fungus,Isaria fumosorosea vol.25, pp.8, 2015, https://doi.org/10.1080/09583157.2015.1020284
  24. Facile Biosynthesis of Silver Nanoparticles Using Descurainia sophia and Evaluation of Their Antibacterial and Antifungal Properties vol.27, pp.5, 2016, https://doi.org/10.1007/s10876-016-1028-5
  25. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots vol.17, pp.11, 2015, https://doi.org/10.1007/s11051-015-3246-4
  26. Myconanotechnology in agriculture: a perspective vol.29, pp.2, 2013, https://doi.org/10.1007/s11274-012-1171-6
  27. Myconanoparticles: synthesis and their role in phytopathogens management vol.29, pp.2, 2015, https://doi.org/10.1080/13102818.2015.1008194
  28. Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.207
  29. Stachys lavandulifolia and Lathyrus sp. Mediated for Green Synthesis of Silver Nanoparticles and Evaluation Its Antifungal Activity Against Dothiorella sarmentorum vol.27, pp.5, 2016, https://doi.org/10.1007/s10876-016-1024-9
  30. Efficacy of Some Nanoparticles to Control Damping-off and Root Rot of Sugar Beet in El-Behiera Governorate vol.11, pp.1, 2017, https://doi.org/10.3923/ajppaj.2017.35.47
  31. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani vol.10, pp.4, 2016, https://doi.org/10.1049/iet-nbt.2015.0078
  32. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens vol.7, 2017, https://doi.org/10.1038/srep45297
  33. Application of Silver Nanoparticles for the Control ofColletotrichumSpeciesIn Vitroand Pepper Anthracnose Disease in Field vol.39, pp.3, 2011, https://doi.org/10.5941/MYCO.2011.39.3.194
  34. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation vol.30, pp.1, 2016, https://doi.org/10.1080/13102818.2015.1106339
  35. Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling vol.43, pp.16, 2013, https://doi.org/10.1080/10643389.2012.671750
  36. Antimycotic Activity of Nanoparticles of MgO, FeO and ZnO on some Pathogenic Fungi vol.2, pp.4, 2012, https://doi.org/10.4018/ijmmme.2012100105
  37. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency vol.15, pp.2, 2017, https://doi.org/10.15171/ijb.1436
  38. Fungi-assisted silver nanoparticle synthesis and their applications vol.41, pp.1, 2018, https://doi.org/10.1007/s00449-017-1846-3
  39. Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.) pp.1573-5044, 2018, https://doi.org/10.1007/s11240-018-1512-8
  40. The Future of Nanotechnology in Plant Pathology vol.56, pp.1, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
  41. Fungal Biosynthesis of Silver Nanoparticles and Their Role in Control of Fusarium Wilt of Sweet Pepper and Soil-borne Fungi in vitro vol.14, pp.6, 2018, https://doi.org/10.3923/ijp.2018.773.780
  42. vol.94, pp.02, 2018, https://doi.org/10.5558/tfc2018-017
  43. Morphological and Biomolecules Dynamics of Phytopathogenic Fungi Under Stress of Silver Nanoparticles vol.8, pp.2, 2018, https://doi.org/10.1007/s12668-018-0510-y
  44. Rapid biosynthesis and characterization of silver nanoparticles: an assessment of antibacterial and antimycotic activity vol.124, pp.4, 2018, https://doi.org/10.1007/s00339-018-1701-7
  45. Mycosilver Nanoparticles: Synthesis, Characterization and its Efficacy against Plant Pathogenic Fungi pp.2191-1649, 2019, https://doi.org/10.1007/s12668-019-0607-y