References
- Cohen, Y., Baidr, A. and Cohen, B. T. 1995. Dimethomorph activity against oomycete fungal plant pathogens. Phytopathology 85:1500-1506 https://doi.org/10.1094/Phyto-85-1500
- Cohen, Y. and Gisi, U. 2007. Differential activity of carboxylic acid amide fungicides against various developmental stages of Phytophthora infestans. Phytopathology 97:1274-1283 https://doi.org/10.1094/PHYTO-97-10-1274
- Cohen, Y., Rubin, A. and Gotlieb, D. 2008. Activity of carboxylic acid amide (CAA) fungicides against Bremia lactucae. European J. Plant Pathol. 122:169-183 https://doi.org/10.1007/s10658-008-9327-9
- Cohen, Y., Rubin, E., Hadad, T., Gotlieb, D., Sierotzki, H. and Gisi, U. 2007. Sensitivity of Phytophthora infestans to mandipropamid and the effect of enforced selsction pressure in the field. Plant Pathol. 56:836-842 https://doi.org/10.1111/j.1365-3059.2007.01625.x
- Davids, L. C. 1995. Phenylamide fungicides: biochemical action and resistance. In Modern Selective Fungicides: Properties, Applications, Mechanisms of Action. ed. by H. Lyr, 2nd ed., pp. 347-354. Gustav Fischer Verlag, Villengang, Germany, and New York
- Gisi, U. and Sierotzki, H. 2008. Fungicide modes of action and resistance in downy mildews. Eur. J. Plant Pathol. 122:157-167 https://doi.org/10.1007/s10658-008-9290-5
- Gisi, U., Waldner, M., Kraus, N., Dubuis, P. H. and Sierotzki, H. 2007. Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathol. 56:199-208 https://doi.org/10.1111/j.1365-3059.2006.01512.x
- Griffiths, R. G., Dancer, J., O'Neill, E. and Harwood, J. L. 2003. A mandelamide pesticide alters lipid metabolism in Phytophthora infestans. New Phytol. 158:345-353 https://doi.org/10.1046/j.1469-8137.2003.00739.x
- Harp, T., Cochran, A., Tory, D., Kuhn, P., Payan, L., Laird, D. and Tally, A. 2007. Development of Revus 2.09SC (a.i. mandipropamid) in the U.S. for control of downy mildews on leafY vegetables. Phytopathology 97:S45
- Hwang, B. K. and Kim, C. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79:221-227 https://doi.org/10.1094/PD-79-0221
- Jende, G., Steiner, U. and Dehne, H. W. 2002. Microscopical characterization of fungicidal effects on infection structures and cell wall formation of Phytophthora infestans. In: Modernfungicide and antifungal compounds III. ed. by H. W. Dehae, K. H. Kuck, P. E. Russell, and H. Lyr, pp. 83-90. Agroconcept, Bohn, Germany
- Jutsum, A. R., Heaney, S. P., Perrin, B. M. and Wege, P. J. 1998. Pesticide resistance: Assessment of risk and implementation of effective management strategies. Pesticide Sci. 54:435-446 https://doi.org/10.1002/(SICI)1096-9063(199812)54:4<435::AID-PS844>3.0.CO;2-K
- Kim, S. B., Lee, S. M., Min, G. Y. and Kim, H. T. 2007. Response to metalaxyl of Phytophthora capsici isolates collected in 2005 and 2006. Kor. J. Pesticide Sci. 11:305-312. (in Korean)
- Matheron, M. E. and Porchas, M. 2000. Impact of azoxystrobin, dimethomorph, fluazinam, festyl-Al, and metalaxyl on growth, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 84:454-458 https://doi.org/10.1094/PDIS.2000.84.4.454
- Reuveni, M. 2003. Activity of the new fungicide bethiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. Eur. J. Plant Pathol. 109:243-251 https://doi.org/10.1023/A:1022836105688
- Rubin, A., Gotlieb, D., Gisi, U. and Cohen, Y. 2008. Mutagenesis of Phytophthora infestans for resistance against carboxylic acid amide and phenylamide fungicides. Plant Dis. 92:675-683 https://doi.org/10.1094/PDIS-92-5-0675
- Russell, P. E. 2004. Sensitivity baselines in fungicide resistance research and management. FRAC, Monogr. No.3, Brussels
- Stein, J. M. and Kirk, W. W. 2004. The generation and quantification of resistance to dimethomorph in Phytophthora infestans. Plant Dis. 88:930-934 https://doi.org/10.1094/PDIS.2004.88.9.930
- Yuan, S. K., Liu, X. L., Si, N. G., Dong, J., Gu, B. G and Jiang, H. 2006. Semsitivity of Phytophthora infestans to flumorph: in vitro determination of baseline sensitivity and the risk of res istance. Plant Pathol. 55:258-263 https://doi.org/10.1111/j.1365-3059.2006.01338.x
Cited by
- Activity of Ten Fungicides againstPhytophthora capsiciIsolates Resistant to Metalaxyl vol.160, pp.11-12, 2012, https://doi.org/10.1111/jph.12009
- The cellulose synthase 3 (CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides vol.116, pp.4, 2012, https://doi.org/10.1016/j.funbio.2012.02.003
- Insights into the molecular mechanism of tolerance to carboxylic acid amide (CAA) fungicides in Pythium aphanidermatum vol.68, pp.8, 2012, https://doi.org/10.1002/ps.3279
- Sensitivity of Phytophthora parasitica to mandipropamid: In vitro determination of baseline sensitivity and in vivo fungitoxicity vol.43, 2013, https://doi.org/10.1016/j.cropro.2012.10.011
- Application of acibenzolar-S-methyl and standard fungicides for control of Phytophthora blight on squash vol.30, pp.12, 2011, https://doi.org/10.1016/j.cropro.2011.08.019
- Baseline and differential sensitivity to mandipropamid among isolates of Peronophythora litchii, the causal agent of downy blight on litchi vol.30, pp.3, 2011, https://doi.org/10.1016/j.cropro.2010.11.001
- The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara vol.55, pp.4, 2015, https://doi.org/10.1515/jppr-2015-0052
- Using Soil-Applied Fungicides to Manage Phytophthora Crown and Root Rot on Summer Squash vol.97, pp.1, 2013, https://doi.org/10.1094/PDIS-12-11-1071-RE
- Baseline sensitivity of Phytophthora capsici to the strobilurin fungicide benzothiostrobin and the efficacy of this fungicide vol.152, pp.3, 2018, https://doi.org/10.1007/s10658-018-1514-8
- Isolates in China vol.102, pp.5, 2018, https://doi.org/10.1094/PDIS-09-17-1396-RE