Identification and Functional Characterization of an afsR Homolog Regulatory Gene from Streptomyces venezuelae ATCC 15439

  • Maharjan, Sushila (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Lee, Hei-Chan (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Published : 2009.02.28

Abstract

Sequencing analysis of a 5-kb DNA fragment from Streptomyces venezuelae ATCC 15439 revealed the presence of one 3.1-kb open reading frame(ORF), designated as afsR-sv. The deduced product of afsR-sv(1,056 aa) was found to have high homology with the global regulatory protein AfsR. Homology-based analysis showed that aftR-sv represents a transcriptional activator belonging to the Streptomyces antibiotic regulatory protein(SARP) family that includes an N-terminal SARP domain containing a bacterial transcriptional activation domain(BTAD), an NB-ARC domain, and a C-terminal tetratricopeptide repeat domain. Gene expression analysis by reverse transcriptase PCR(RT-PCR) demonstrated the activation of transcription of genes belonging to pikromycin production, when aftR-sv was overexpressed in S. venezuelae. Heterologous expression of the aftR-sv in different Streptomyces strains resulted in increased production of the respective antibiotics, suggesting that afsR-sv is a positive regulator of antibiotics biosynthesis.

Keywords

References

  1. Arias, P., M. A. Fernández-Moreno, and F. Malpartida. 1999. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J. Bacteriol. 181: 6958-6968
  2. Bibb, M. 1996. 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142: 1335-1344 https://doi.org/10.1099/13500872-142-6-1335
  3. Bystrykh, L. V., M. A. FernáNdez-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related '"blue pigments'" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244 https://doi.org/10.1128/jb.178.8.2238-2244.1996
  4. Demain, A. L. 1999. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52: 455-463 https://doi.org/10.1007/s002530051546
  5. Floriano, B. and M. Bibb. 1996. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 21: 385-396 https://doi.org/10.1046/j.1365-2958.1996.6491364.x
  6. Hopwood, D. A., K. F. Chater, and M. J. Bibb. 1995. Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28: 65-102
  7. Horinouchi, S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467 https://doi.org/10.1007/s10295-003-0063-z
  8. Im, J. H., M. G. Kim, and E. S. Kim. 2007. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J. Microbiol. Biotechnol. 17: 534-538
  9. Kieser, T., J. B. Mervyn, B. J. Mark, C. F. Keith, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation Norwich, U.K
  10. Kim, C. Y., H. J. Park, and E. S. Kim. 2006. Functional dissection of sigma-like domain in antibiotic regulatory gene, afsR2 in Streptomyces lividans. J. Microbiol. Biotechnol. 16: 1477-1480
  11. Kim, E. S., H. J. Hong, C. Y. Choi, and S. N. Cohen. 2001. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183: 2198-2203 https://doi.org/10.1128/JB.183.7.2198-2203.2001
  12. Kim, Y. J., J. Y. Song, M. H. Moon, C. P. Smith, S. K. Hong, and Y. K. Chang. 2007. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol. 76: 1119-1130 https://doi.org/10.1007/s00253-007-1083-9
  13. Lee, P. C., T. Umeyama, and S. Horinouchi. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-1430 https://doi.org/10.1046/j.1365-2958.2002.02840.x
  14. Lee, S. K., J. W. Park, J. W. Kim, W. S. Jung, S. R. Park, C. Y. Choi, et al. 2006. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Nat. Prod. 69: 847-849 https://doi.org/10.1021/np060026p
  15. Maezawa, I., A. Kinumaki, and M. Suzuki. 1978. Biological glycosidation of macrolide aglycones. II. Isolation and characterization of desosaminyl-platenolide I. J. Antibiot. (Tokyo) 31: 309-318 https://doi.org/10.7164/antibiotics.31.309
  16. Pageni, B. B., T. J. Oh, K. Liou, Y. J. Yoon, and J. K. Sohng. 2008. Genetically engineered biosynthesis of macrolide derivatives including 4-amino-4,6-dideoxy-L-glucose from Streptomyces Venezuelae YJ003-OTBP3. J. Microbiol. Biotechnol. 18: 88-94
  17. Parajuli, N., H. T. Viet, K. Ishida, H. T. Tong, H. C. Lee, K. Liou, and J. K. Sohng. 2005. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res. Microbiol. 156: 707-712 https://doi.org/10.1016/j.resmic.2005.03.005
  18. Perlman, D. 1953. Colorimetric method for determination of aureomycin, carbomycin, erythromycin, and terramycin in aqueous solution. Science 118: 628-629 https://doi.org/10.1126/science.118.3073.628
  19. Rajkarnikar, A., H. J. Kwon, Y. W. Ryu, and J. W. Suh. 2007. Two threonine residues required for role of AfsKav in controlling morphogenesis and avermectin production in Streptomyces avermitilis. J. Microbiol. Biotechnol. 17: 1563-1567
  20. Richet, E. and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8: 981-987
  21. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3 Ed. Cold Spring Harbor Laboratory Press, New York, U.S.A
  22. Schreiber, V. and E. Richet. 1999. Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP. J. Biol. Chem. 19: 33220-33226
  23. Sheldon, P. J., S. B. Busarow, and C. R. Hutchinson. 2002. Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol. Microbiol. 44: 449-460 https://doi.org/10.1046/j.1365-2958.2002.02886.x
  24. Sthapit, B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206 https://doi.org/10.1016/j.febslet.2004.04.033
  25. Tanaka, A., Y. Takano, Y. Ohnishi, and S. Horinouchi. 2007. AfsR recruits RNA polymerase to the afsS promoter: A model for transcriptional activation by SARPs. J. Mol. Biol. 369: 322-333 https://doi.org/10.1016/j.jmb.2007.02.096
  26. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  27. Tomono, A., M. Mashiko, T. Shimazu, H. Inoue, H. Nagasawa, M. Yoshida, Y. Ohnishi, and S. Horinouchi. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. (Tokyo) 59: 117-123 https://doi.org/10.1038/ja.2006.18
  28. Umeyama, T. and S. Horinouchi. 2001. Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J. Bacteriol. 183: 5506-5512 https://doi.org/10.1128/JB.183.19.5506-5512.2001
  29. Umeyama, T., P. C. Lee, and S. Horinouchi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425 https://doi.org/10.1007/s00253-002-1045-1
  30. Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292
  31. Wilson, D. J., Y. Xue, K. A. Reynolds, and D. H. Sherman. 2001. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Bacteriol. 183: 3468-3475 https://doi.org/10.1128/JB.183.11.3468-3475.2001
  32. Xue, Y., L. Zhao, H. W. Liu, and D. H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95: 12111-12116 https://doi.org/10.1073/pnas.95.21.12111