Genetic and Phenotypic Diversity of Fenitrothion-Degrading Bacteria Isolated from Soils

  • Kim, Kyung-Duk (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ahn, Jae-Hyung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Tae-Sung (Environmental Biosafety Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Park, Seong-Chan (Department of Biology, Sunchon National University) ;
  • Seong, Chi-Nam (Department of Biology, Sunchon National University) ;
  • Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2009.02.28

Abstract

Twenty-seven fenitrothion-degrading bacteria were isolated from different soils, and their genetic and phenotypic characteristics were investigated. Analysis of the 16S rDNA sequence showed that the isolates were related to members of the genera Burkholderia, Pseudomonas, Sphingomonas, Cupriavidus, Corynebacterium, and Arthrobacter. Among the 27 isolates, 12 different chromosomal DNA fingerprinting patterns were obtained by polymerase chain reaction(PCR) amplification of repetitive extra genic palindromic(REP) sequences. The isolates were able to utilize fenitrothion as a sole source of carbon and energy, producing 3-methyl-4-nitrophenol as the intermediate metabolite during the complete degradation of fenitrothion. Twenty-two of 27 isolates were able to degrade parathion, methyl-parathion, and p-nitrophenol but only strain BS2 could degrade EPN(O-ethyl-O-p-nitrophenyl phenylphosphorothioate) as a sole source of carbon and energy for growth. Eighteen of the 27 isolates had plasmids. When analyzed with PCR amplification and dot-blotting hybridization using various specific primers targeted to the organophosphorus pesticide hydrolase genes of the previously reported isolates, none of the isolates showed positive signals, suggesting that the corresponding genes of our isolates had no significant sequence homology with those of the previously isolated organophosphate pesticide-degrading bacteria.

Keywords

References

  1. Ahn, J. H., M. C. Kim, H. C. Shin, M. K. Choi, S. S. Yoon, T. S. Kim, H. G. Song, G. H. Lee, and J. O. Ka. 2006. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 16: 1561-1569
  2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410
  3. Barles, R. W., C. G. Daughton, and D. P. H. Hsieh. 1979. Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Environ. Contam Toxicol. 8: 647-660 https://doi.org/10.1007/BF01054867
  4. de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187
  5. Hardy, K. G. 1993. Plasmid: A practical approach, pp. 99-100. 2nd Ed. Oxford University Press, Walton Street, New York
  6. Hayatsu, M., M. Hirano, and S. Tokuda. 2000. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl. Environ. Microbiol. 66: 1737-1740 https://doi.org/10.1128/AEM.66.4.1737-1740.2000
  7. Horne, I., R. L. Harcourt, T. D. Sutherland, R. J. Russell, and J. G. Oakesshott. 2002. Identification of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol. Lett. 206: 51-55 https://doi.org/10.1111/j.1574-6968.2002.tb10985.x
  8. Horne, I., T. D. Stherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3372-3376
  9. Ka, J. O. and J. M. Tiedje. 1994. Integration and excision of a 2,4 dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J. Bacteriol. 176: 5284-5289
  10. Kado, C. I. and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373
  11. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  12. Kim, T. S., J. H. Ahn, M. K. Choi, H. Y. Weon, M. S. Kim, C. N. Seong, H. G. Song, and J. O. Ka. 2007. Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J. Microbiol. Biotechnol. 17: 1890-1893
  13. Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  14. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
  15. Li, X., J. He, and S. Li. 2007. Isolation of a chlorpyrifosdegrading bacterium, Sphingomonas sp. Dsp-2, and cloning of the mpd gene. Res. Microb. 158: 143-149 https://doi.org/10.1016/j.resmic.2006.11.007
  16. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  17. McConnell, R., F. Pachecob, K. Wahlberg, W. Klein, O. Malespin, R. Magnotti, M. Akerblom, and D. Murray. 1999. Subclinical health effects of environmental pesticide contamination in a developing country: Cholinesterase depression in children. Environ. Res. 81: 87-91 https://doi.org/10.1006/enrs.1999.3958
  18. Munnecke, D. M. and D. P. H. Hsieh. 1975. Pathways of microbial metabolism of parathion. Am. Soc. Micro. 31: 63-69
  19. Nelson, L. M. 1982. Biologically induced hydrolysis of parathion in soil: Isolation of hydrolyzing bacteria. Soil Biol. Biochem. 14: 219-222 https://doi.org/10.1016/0038-0717(82)90028-1
  20. Nelson, L. M., B. Yaron, and P. H. Nye. 1982. Biologically induced hydrolysis of parathion in soil: Kinetics and modeling. Soil Biol. Biochem. 14: 223-228 https://doi.org/10.1016/0038-0717(82)90029-3
  21. Ohshiro, K., T. Kakuta, N. Nikaidou, T. Watanabe, and T. Uchiyama. 1999. Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5. J. Biosci. Bioeng. 87:531-534 https://doi.org/10.1016/S1389-1723(99)80105-4
  22. Park, H. D. and J. O. Ka. 2003. Genetic and phenotypic diversity of dichlorprop-degrading bacteria isolated from soil. J. Microbiol. 41: 7-15
  23. Park, I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4 dichlorophenoxy) butyric acid-degrading bacteria from agricultural soil. J. Microbiol. Biotechnol. 13: 243-250
  24. Qing, H., Z. Zhang, Y. Hong, and S. Li. 2007 A microcosorm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeterior. Biodegradation. 59: 55-61 https://doi.org/10.1016/j.ibiod.2006.07.013
  25. Rani, N. L. and D. Lalithakumari. 1994. Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol. 40: 1000-1006 https://doi.org/10.1139/m94-160
  26. Ragnardottir, K. V. 2000. Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. 157: 859-879 https://doi.org/10.1144/jgs.157.4.859
  27. Sender, C. M., D. T. Gibson, D. M. Munnecke, and J. H. Lancaster. 1982. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 37: 886-891
  28. Siddavattam, D., K. Syed, B. Manavathi, S. B. Pakala, and M. Merrick. 2003. Transposon-like organization of the plasmidborne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69: 2533-2539 https://doi.org/10.1128/AEM.69.5.2533-2539.2003
  29. Singh, B. K. and A. Walker. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30: 428-471 https://doi.org/10.1111/j.1574-6976.2006.00018.x
  30. Tago, K., E. Sekiya, A. Kiho, C. Katsuyama, Y. Hoshito, N. Yamada, K. Hirano, H. Sawada, and M. Hayatsu. 2006. Diversity of fenitrothion-degrading bacteria in soil from distant geographical areas. Microbes Environ. 21: 58-64 https://doi.org/10.1264/jsme2.21.58
  31. Tago, K., S. Yonezawa, T. Ohkouchi, T. Ninomiya, M. Hashimoto, and M. Hayatsu. 2006. A novel organophosphorus pesticide hydrolase gene encoded on a plasmid in Burkolderia sp. strain NF100. Microbes Environ. 21: 53-57 https://doi.org/10.1264/jsme2.21.53
  32. Zhonghui, Z., H. Qing, Z. Guoshun, X. Jianhong, and L. Shunpeng. 2005. Studies on isolation identification of fenitrothion degradation bacteria FDS-1 and its degradation characteristics. China Environ. Sci. 25: 52-56