DOI QR코드

DOI QR Code

나노인덴테이션을 이용한 MLCC용 BaTiO3 세라믹스의 기계적 물성평가

Feasibility Test for Mechanical Property Characterization of BaTiO3 Ceramics for MLCC Application Using Nanoindentation

  • 류성수 (요업기술원 이천분원 엔지니어링세라믹센터) ;
  • 김성원 (요업기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형준 (요업기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (요업기술원 이천분원 엔지니어링세라믹센터)
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Seong-Won (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyeong-Jun (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 발행 : 2009.02.28

초록

In this study, the feasible test for the mechanical property characterization of $BaTiO_3$ ceramics and multi-layer ceramic capacitor(MLCC) was performed with nanoindentation technique. In case of $BaTiO_3$ ceramics, hardness and elastic modulus are dependent on the densification of specimen showing the highest hardness and elastic modulus values of 12.3 GPa and 155 GPa, respectively at $1260^{\circ}C$. In case of MLCC chip, hardness of dielectric layer was lower than that of margin region. The nanoindentation method could be useful tool for the measurement of mechanical property within $BaTiO_3$ dielectric layer of very thin thickness in high capacitance MLCC.

키워드

참고문헌

  1. T. Nagai, K. Iijima and K. Niihara: J. Am. Ceram. Soc., 83 (2000) 107. https://doi.org/10.1111/j.1151-2916.2000.tb01156.x
  2. T. Tsurumi, H. Adachi, H. Kakemoto, S. Wada, Y. Mizuno, H. Chazono and H. Kishi: Jpn. J. Appl. Phys., 41 (2002) 6929. https://doi.org/10.1143/JJAP.41.6929
  3. Y. I. Shin, K. M. Kang, Y. G. Jung, J. G. Yeo, S. G. Lee and U. Paik: J. Eur. Ceram. Soc., 23 (2003) 1427. https://doi.org/10.1016/S0955-2219(02)00346-1
  4. J. S. Park, H. Shin, K. S. Hong, H. S. Jung, J. K. Lee and K. Y. Rhee: Microelectronic Engineering, 83 (2006) 2558. https://doi.org/10.1016/j.mee.2006.06.008
  5. C. X. Wang, X. Zhou and M. Wang: Mater. Char., 52 (2004) 301. https://doi.org/10.1016/j.matchar.2004.06.007
  6. M. F. Doerner and W. D. Nix: J. Mater. Res., 1 (1986) 601. https://doi.org/10.1557/JMR.1986.0601
  7. G. M. Pharr and W. C. Oliver: MRS Bull., 17 (1992) 28. https://doi.org/10.1557/S0883769400041634
  8. W. C. Oliver and G. M. Pharr: J. Mater. Res., 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
  9. G. M. Pharr: Mater. Sci. & Eng. A, 253 (1998) 151. https://doi.org/10.1016/S0921-5093(98)00724-2
  10. M. G. Gee, R. Roebuck, P. Lindahl and H-O Andren: Mater. Sci. Eng. A, 253 (1996) 128. https://doi.org/10.1016/0921-5093(95)10099-7
  11. S. Guicciardi, L. Silvestroni, G. Pezzotti and D. Sciti: Adv. Eng. Mater., 9 (2007) 389. https://doi.org/10.1002/adem.200600202
  12. X. Shi, H. Yang, G. Shao, X. Duan and Z. Xiong: Mater. Char., 59 (2008) 374. https://doi.org/10.1016/j.matchar.2007.02.004
  13. T. Wang, X. Wang, T. H. Song and L. Li: Jpn. J. Appl. Phys., 46 (2007) 6751. https://doi.org/10.1143/JJAP.46.6751