DOI QR코드

DOI QR Code

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • 발행 : 2009.02.28

초록

Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

키워드

참고문헌

  1. R. Kitakawa: Mach. Tool., 33 (1989) 27.
  2. H. S. Kalish: Met. Prog., 124 (1983) 21.
  3. D. Moskowits: US Patent 4., 108 (1978) 694.
  4. B. H. Lohse, A. Calka and D. Wexler: J. Alloys Compd., 394(1-2) (2005) 148. https://doi.org/10.1016/j.jallcom.2004.09.074
  5. I. N. Mihailescu, M. L. De Giorge, C. H. Boulmer-leborgne and S. Urdea: J. Appl. Phys., 75 (1994) 5286. https://doi.org/10.1063/1.355729
  6. Y.-L. Li and T. Ishigaki: Mater Sci Eng A., 345 (2003) 301. https://doi.org/10.1016/S0921-5093(02)00506-3
  7. D. W. Lee, S. V. Alexandrovskii and B. K. Kim: Mater Lett., 58 (2004) 1471 . https://doi.org/10.1016/j.matlet.2003.10.011
  8. J. C. Lasalvia and M. A. Meyers: Int. J. Self-Propagating High-Temperature Synth., 4 (1995) 43.
  9. C. J. Quinn and D. L. Kohlstedt: J. Mater. Sci., 19 (1984) 21.
  10. Q. Zheng and R. G Reddy: J. Mater. Sci., 39 (2004) 141. https://doi.org/10.1023/B:JMSC.0000007738.14116.fd
  11. S. C. Tjong and Z. Y. Ma: Mater Sci Eng R., 29 (2000) 49. https://doi.org/10.1016/S0927-796X(00)00024-3
  12. I. J. Mccolm and N. J. Clark: Blackie, London, 60 (1986).
  13. P. Ettmayer, H. Kolaska, W. Lenganer and K. Dreyer: Int. J. of Refractory and Hard materials., 13 (1995) 343. https://doi.org/10.1016/0263-4368(95)00027-G
  14. K. Edmund and E. K. Storms: The Refractory Carbides. A series of monographs Academic Press, New York, 2 (1967) 1.
  15. Hugh, D. Pierson: Handbook of Refractory carbides and nitrides (properties, characteristics, processing and applications), Noyes Publications, New Jersey, 248 (1996).
  16. Y. Gotoh, K. Fujimura, M. Koike, Y. Ohkoshi, M. Nagura, K. Akamatsu and S. Deki: Mater Res Bull., 36 (2001) 2268. https://doi.org/10.1016/S0025-5408(01)00713-9
  17. J. C. Lasalvia and M. A. Meyers: Microstructure, Int. J. Self-Propagating High-Temperature Synth., 4 (1995) 43.
  18. P. Huber, D. Manova, S. Mändl and B. Rauschenbach: Surface Coat Technol., 174-175 (2003) 1243. https://doi.org/10.1016/S0257-8972(03)00458-4
  19. T. Licko, V. Figusch and J. Puchyona: Control of kinetics and morphology, J. Eur. Ceram. Soc., 9 (1992) 219. https://doi.org/10.1016/0955-2219(92)90008-2
  20. R. Koc and J. S. Folmer: J. Mater. Sci., 32 (1997) 3101. https://doi.org/10.1023/A:1018634214088
  21. I. N. Mihailescu, N. Chitica, V. S. Teodorescu, M. Popescu, M. L. DeGiorgi, A. Luches, A. Perrone, Ch. Boulmer- Leborgne, J. Hermann, B. Dubreuil, S. Udrea, A Barborica and I. Iova: J. Appl. Phys., 75 (1994) 5286. https://doi.org/10.1063/1.355729
  22. I. S. Ahn, T. K. Sung, S. Y. Bae, H. J. Cho and D. K. Park: Metals Mater. Intern., 12 (2006) 249. https://doi.org/10.1007/BF03027539

피인용 문헌

  1. Quantitative Study on the Refinement Behaviors of TiC Powders Produced by Mechanical Milling Under Different Impact Energy vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.032