Anodization of $TiO_2$ with Seawater Electrolyte; Evaluation of Hydrogen Production in PEG and Photocatalytic Cr(VI) Reduction

해수전해질을 이용한 양극산화 $TiO_2$ 제조; 광전기화학적 수소제조 및 Cr(VI) 환원처리 연구

  • Shim, Eun-Jung (Hydrogen Energy Research Center, Korea Insitute of Energy Research) ;
  • Park, Min-Sung (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.) ;
  • Her, A-Young (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.) ;
  • Joo, Hyun-Ku (Hydrogen Energy Research Center, Korea Insitute of Energy Research) ;
  • Yoon, Jae-Kyung (Hydrogen Energy Research Center, Korea Insitute of Energy Research)
  • 심은정 (한국에너지기술연구원 수소에너지연구센터) ;
  • 박민성 (연세대학교 화공생명공학과) ;
  • 허아영 (연세대학교 화공생명공학과) ;
  • 주현규 (한국에너지기술연구원 수소에너지연구센터) ;
  • 윤재경 (한국에너지기술연구원 수소에너지연구센터)
  • Published : 2009.10.31

Abstract

The present works were performed that titanium foil was anodized in various dilution ratios of seawater and distilled water with 10V external voltage applied, then annealed at $450^{\circ}C$ to obtain $TiO_2$ on the Ti substrate. The prepared samples were characterized by instruments (XRD, SEM, and photocurrent) and used to investigate rate of hydrogen production in photoelectrochemical cell as well as Cr(VI) reduction. As the results of experiments, the anodized $TiO_2$ in seawater electrolytes, which are ranged from 15 to 50 times dilution of seawater, was showed a relatively higher hydrogen production (ca. 97~110 umol/hr-$cm^2$) and Cr(VI) reduction (ca. 95% reduction).

Keywords

References

  1. 심은정, 배상현, 윤재경, 주현규, '일체형 포토어노드를 활용한 메틸렌블루의 분해', 한국수소 및 신에너지학회논문집, Vol. 18, No. 1, 2007, pp. 40-45
  2. 심은정, 배상현, 윤재경, 주현규, '광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용', 한국수소 및 신에너지학회 논문집, Vol. 18, No.2, 2007, pp. 151-156
  3. 배상현, 강준원, 심은정, 윤재경, 주현규, '광어노드의 수소제조와 광전기 특성에 관한 상관관계 연구', 한국수소 및 신에너지학회 논문집, Vol. 18, No.3, 2007, pp. 244-249
  4. 심은정, 박윤봉, 배상현, 윤재경, 주현규, '수소제조용 광전극을 활용한 Cr(VI) 환원처리에 관한 연구', 한국수소 및 신에너지학회논문집, Vol. 18, No.4, 2007, pp. 452-457
  5. A. Fujishima, X. Zhang, D. A. Tryk, '$TiO_2$, Photocatalysis and Related Surface Phenomena', Surface Science Reports, Vol. 63, 2008, pp. 515-582 https://doi.org/10.1016/j.surfrep.2008.10.001
  6. S. Bae, J. Kang, E. Shim, J. Yoon, H. Joo, 'Correlation of Electrical and Physical Propeties of Photoanode with Hydrogen Evolution in Enzymatic Photo-electrochemical Cell', J. Power Sources, Vol. 179, 2008, pp. 863-869 https://doi.org/10.1016/j.jpowsour.2007.12.117
  7. S. Bae, E. Shim, J. Yoon, H. Joo, 'Photoanodic and Cathodic Role of Anodized Tubular Titania in light-sensitized Enzymatic Hydrogen Production', J. Power Sources, Vol.186, 2008, pp. 439-444 https://doi.org/10.1016/j.jpowsour.2008.06.094
  8. J. Yoon, E. Shim, S. Bae, H. Joo, 'Application of Immobilized Nanotubular $TiO_2$ Electrode for Photocatalytic Hydrogen Evolution: Reduction of Hexavalent Chromium (Cr(VI)) in Water', J. Hazardous Materials, Vol. 161, 2009, pp. 1069-1074 https://doi.org/10.1016/j.jhazmat.2008.04.057
  9. J. Yoon, E. Shim, H. Joo, 'Photocatalytic Reduction of Hexavalent Chromium (Cr(VI)) Using Rotating $TiO_2$, Mesh', KJChE, Vol. 26, No.5, 2009, pp. 1296-1300 https://doi.org/10.2478/s11814-009-0228-1
  10. H. Joo, S. Boo, C. Kim, S. Kim, J. Yoon, 'Hydrogen Evolution in Enzymatic Photoelectrochemical Cell Using Modified Seawater Electrolytes Produced by Membrane Desalination Process', Solar Energy Materials & Solar Cells, Vol. 93, 2009, pp. 1555-1561 https://doi.org/10.1016/j.solmat.2009.04.008
  11. S. Ji, H. Jun, J. Jang, H. Son, P.H. Borse, J. Lee, 'Photocatalytic Hydrogen Production from Natural Seawater', Photochem. PhotobioL A. Vol. 189, 2007, pp. 141-144 https://doi.org/10.1016/j.jphotochem.2007.01.011
  12. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A Grimes, 'Enhanced Photocleavage of Water Using Titinia Nanotubes Arreays', Nano Letters, Vol. 5, 2005, pp. 191-195 https://doi.org/10.1021/nl048301k
  13. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A Grimes, 'A Review on Highly Ordered, Vertically Oriented $TiO_2$ Nanotube Arrays:Fabrication, Material Properties and Solar Energy Applications', Solar Energy Materials & Solar Cells, Vol. 90, 2006, pp. 2011-2015 https://doi.org/10.1016/j.solmat.2006.04.007