Wafer-Level MEMS Capping Process using Electrodeposition of Ni Cap and Debonding with SnBi Solder Layer

Ni 캡의 전기도금 및 SnBi 솔더 Debonding을 이용한 웨이퍼 레벨 MEMS Capping 공정

  • Choi, J.Y. (Materials Science and Engineering, Hongik University) ;
  • Lee, J.H. (Materials Science and Engineering, Seoul National University of Technology) ;
  • Moon, J.T. (SOP Technology Team, IT Convergence & Components Laboratory, ETRI) ;
  • Oh, T.S. (Materials Science and Engineering, Hongik University)
  • 최정열 (홍익대학교 신소재공학과) ;
  • 이종현 (서울산업대학교 신소재공학과) ;
  • 문종태 (한국전자통신연구원 IT 융합부품연구소 SOP 연구팀) ;
  • 오태성 (홍익대학교 신소재공학과)
  • Published : 2009.12.30

Abstract

We investigated the wafer-level MEMS capping process for which cavity formation in Si wafer was not required. Ni caps were formed by electrodeposition on 4" Si wafer and Ni rims of the Ni caps were bonded to the Cu rims of bottom Si wafer by using epoxy. Then, top Si wafer was debonded from the Ni cap structures by using SnBi layer of low melting temperature. As-evaporated SnBi layer was composed of double layers of Bi and Sn due to the large difference in vapor pressures of Bi and Sn. With keeping the as-evaporated SnBi layer at $150^{\circ}C$ for more than 15 sec, SnBi alloy composed of eutectic phase and Bi-rich $\beta$ phase was formed by interdiffusion of Sn and Bi. Debonding between top Si wafer and Ni cap structures was accomplished by melting of the SnBi layer at $150^{\circ}C$.

Si 기판의 캐비티 형성이 불필요한 웨이퍼-레벨 MEMS capping 공정을 연구하였다. 4인치 Si 웨이퍼에 Ni 캡을 전기도금으로 형성하고 Ni 캡 rim을 Si 하부기판의 Cu rim에 에폭시 본딩한 후, SnBi debonding 층을 이용하여 상부기판을 Ni 캡 구조물로부터 debonding 하였다. 진공증착법으로 형성한 SnBi debonding 층은 Bi와 Sn 사이의 심한 증기압 차이에 의해 Bi/Sn의 2층 구조로 이루어져 있었다. SnBi 증착 층을 $150^{\circ}C$에서 15초 이상 유지시에는 Sn과 Bi 사이의 상호 확산에 의해 eutectic 상과 Bi-rich $\beta$상으로 이루어진 SnBi 합금이 형성되었다. $150^{\circ}C$에서 유지시 SnBi의 용융에 의해 Si 기판과 Ni 캡 구조물 사이의 debonding이 가능하였다.

Keywords

References

  1. 좌성훈, "상용화 관점에서 바라본 MEMS 산업현황", 한국반도체연구조합 웹진, (2005).
  2. 주병권, "MEMS 기술의 개요 및 전망", 전자부품, (2001) pp.138-145.
  3. A. C. Imhoff, "Packaging technologies for RFICs : current status and future trends", 1999 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., (1999) p.7
  4. H. Reichl, V. Grosser, "Overview and development trends in the field of MEMS packaging", Proc. IEEE MEMS 2001 Conf., (2001) pp.1-5.
  5. C. Statter, E. Olson, and K. Farmer, "Design and fabrication of a miniature pressure sensor head using direct bonded ultrathin silicon wafers", J. Micromech. Microeng, 7 (1996) 108-110.
  6. 주병권, "MEMS의 마이크로 패키징 기술 - 벌크형 및 표면형 밀봉 기술", 전자부품, (2001) pp.130-138.
  7. C. Tsou, H. Li, and H.-C. Chang, "A novel wafer-level hermetic packaging for MEMS devices", IEEE Trans. Adv. Packag., 30 (2007) 616-621. https://doi.org/10.1109/TADVP.2007.906236
  8. L. Lin, "MEMS post-packaging by localized heating and bonding", IEEE Trans. Adv. Packag., 23 (2000) 608-616. https://doi.org/10.1109/6040.883749
  9. W. Kim, Q. Wang, K. Jung, J. Hwang, and C. Moon, "Application of Au-Sn eutectic bonding in hermetic RF MEMS wafer level packaging", 9th Int. Symp. Adv. Packag. Mater., (2004) pp.215-219.
  10. H.-A. Yang, M. Wu, and W. Fang, "Localized induction heating solder bonding for wafer level MEMS packaging", J. Micromech. Microeng., 15 (2005) 394-399. https://doi.org/10.1088/0960-1317/15/2/020
  11. C.D. Fung, P.W. Cheung, W.H. Ko and D.G. Fleming(eds), "Micromachining and micro packaging of transducers", Amsterdam, Elsevier (1985).
  12. G. T. A. Kovacs, "Micromachined transducers source book", New York, McGraw-Hall (2000).
  13. Y. T. Cheng, W. T. Hsu, K. Najafi, T. C. Nguyen, and L. Lin, "Vacuum packaging technology using localized aluminum/silicon-to-glass bonding", J. of MEMS, 11 (2002) 556-565. https://doi.org/10.1109/JMEMS.2002.802903
  14. C. H. Yun, T. J. Brosniham, W. A. Webster, and J. Villarreal, "Wafer-level packaging of MEMS accelerometers with through-wafer interconnects", Proc. Electon. Comp. Technol. Conf., (2005) pp.320-323.
  15. "Constitution of Binary Alloys", 2nd edition, M. Hansen and K. Anderko, McGraw-Hill, New York, (1958).
  16. "CRC Handbook of Chemistry and Physics", 60th Edition, R.C.Weast (ed), CRC Press Inc, Boca Raton, (1979) D-198.
  17. K. N. Tu, "Solder joint technology: materials, properties, and reliability", Springer Science, New York (2007) p.188.