Numerical Design of Double Quantum Coherence Filter for the Detection of Myo-Inositol In vivo

인체 내 myo-Inositol 검출을 위한 수치해석적 이중양자 필터 디자인

  • Lee, Yun-Jung (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Medicine and Science) ;
  • Jung, Jin-Young (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Medicine and Science) ;
  • Noh, Hyung-Joon (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Medicine and Science) ;
  • Yu, Ung-Sik (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Medicine and Science) ;
  • Kim, Hyeon-Jin (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Medicine and Science)
  • 이윤정 (가천의과학대학교, 이길여암당뇨연구원) ;
  • 정진영 (가천의과학대학교, 이길여암당뇨연구원) ;
  • 노형준 (가천의과학대학교, 이길여암당뇨연구원) ;
  • 유웅식 (가천의과학대학교, 이길여암당뇨연구원) ;
  • 김현진 (가천의과학대학교, 이길여암당뇨연구원)
  • Published : 2009.12.30

Abstract

Purpose : A numerical method of designing a multiple quantum filter (MQF) is presented for the optimum detection of myo-inositol (mI), an important brain metabolite, by using in vivo proton nuclear magnetic resonance spectroscopy ($^1$-HMRS). Materials and Methods : Starting from the characterization of the metabolite, the filter design includes the optimization of the sequence parameters such as the two echo times (TEs), the mixing time (TM), and the flip angle and offset frequency of the 3rd $90^{\circ}$ pulse which converts multiple quantum coherences (MQCs) back into single quantum coherences (SQCs). The optimized filter was then tested both in phantom and in human brains. Results : The results demonstrate that the proposed MQF can improve the signal-to-background ratio of the target metabolite by a factor of more than three by effectively suppressing the signal from the background metabolites. Conclusion : By incorporating a numerical method into the design of MQFs in $^1$-HMRS the spectral integrity of a target metabolite, in particular, with a complicated spin system can be substantially enhanced.

목적: 수치해석적인 방법을 통해 핵자기공명 분광기법에서의 다중양자 필터를 디자인하는 방법을 소개하고 이를 뇌의 중요한 대사체인 myo-inositol의 생체 내 검출에 이용하였다. 대상 및 방법 : 이를 위해 우선적으로 myo-inositol의 분광학적 성질을 조사 한 후 다중양자 필터의 echo time, mixing time 그리고 세번째 $9^{\circ}$ 펄스의 flip angle과 offset frequency같은 시퀀스 파라미터들을 최적화 하였다. 최적화된 필터는 우선적으로 실험 팬텀에서 테스트 한 후 최종적으로 인간의 두뇌에서 그 성능을 검증하였다. 결과: 실험결과를 토대로, 본 연구에서 제안하는 다중양자 필터를 사용하여 신호의 순수도가 크게 개선된 타겟 대사체의 신호를 얻을 수 있음을 알 수 있다. 결론: 수치해석적인 방법을 통하여 핵자기공명 분광기법에서의 다중양자 필터를 디자인함으로써 특히, 복잡한 스핀계를 갖는 타겟대사체의 신호의 순수도를 크게 강화할 수 있다.

Keywords

References

  1. Moats RA, Ernst T, Shonk TK, Ross BD. Abnormal celebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 1994;32:110-115 https://doi.org/10.1002/mrm.1910320115
  2. Miller BL, Moats RA, Shonk TK, Ernst T, Woolley S, Ross BD. Alzheimer disease: depection of increased cerebral myoinositol with proton MR spectroscopy. Radiology 1993;187:433-437 https://doi.org/10.1148/radiology.187.2.8475286
  3. Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Gruetter R. In vivo magnetic spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 1997;68:161-172 https://doi.org/10.1016/S0301-4622(97)00032-X
  4. Shonk T, Ross BD. Role of increased cerebral myo-inositol in the dementia of Down Syndrome. Magn Reson Med 1995;33:858-861 https://doi.org/10.1002/mrm.1910330619
  5. Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subcute and chronic Diabetes Mellitus: detection with proton MR spectroscopy. Radiology 1992;184:123-130 https://doi.org/10.1148/radiology.184.1.1319074
  6. Kreis R, Ross BD, Farrow NA, Ackerman Z. Metabolic disorders of the brain in chronic Hepatic Encephalopathy detected with H-1 MR spectroscopy. Radiology 1992;182:19-27 https://doi.org/10.1148/radiology.182.1.1345760
  7. Naegele T, Grodd W, Viebahn R, Seeger U, Klose U, Seitz D, Kaiser S, Mader I, Mayer J, Lauchart W, Gregor M., Voigt K. MR imaging and $^1H$ spectroscopy of brain metabolites in Hepatic Encephalopathy: Time-course of renormalization after liver transplantation. Radiology 2000;216:683-691 https://doi.org/10.1148/radiology.216.3.r00se27683
  8. Ross BD, Jacobson S, Villamil F, Korula J, Kreis R, Ernst T, Shonk T, Moats RA. Subclinical Hepatic Encephalopathy: proton MR spectroscopic abnormalities. Radiology 1994;193: 457-146 https://doi.org/10.1148/radiology.193.2.7972763
  9. Moat RA, Lien YH, Filippi D, Ross BD. Decrease in cerebral inositols in rats and humans. Biochem J 1993; 295:15-18 https://doi.org/10.1042/bj2950015
  10. Frey R, Metzler D, Fisher P, Heiden A, Scharfetter J, Moser E, Kasper S. Myo-inositol in depressive and healthy subjects determined by frontal $^1H$-magnetic resonance spectroscopy at 1.5 tesla. J Psychol Res 1998;32:411-420 https://doi.org/10.1016/S0022-3956(98)00033-8
  11. Berridge MJ, Irvine RF. Inositol phosphates and cell signaling. Nature 1989;41: 197-205
  12. Shimon H, Agam G, Belmaker RH, Hyde TM, Kleinman JE. Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patients with bipolar disorder. Am J PsychoI1997;54:1148-1150
  13. Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua J, Manji HK. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychol 1999;156:1902-1908
  14. Lenox RH, Watson and DG. Lithium and the brain: a psychopharmacological strategy to a molecular basis for manic depressive illness. Clin chem 1994;40:309-314
  15. Michaelis T, Merboldt KD, Bruhn H, Frahm J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219-227 https://doi.org/10.1148/radiology.187.1.8451417
  16. Choi CG, Frahm J. Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med 1999;41:204-207 https://doi.org/10.1002/(SICI)1522-2594(199901)41:1<204::AID-MRM29>3.0.CO;2-7
  17. Bruhn H, Stoppe G, Staedt J, Merboldt KD, Frahm J. Quantitative proton MRS in vivo shows cerebral myo-inositol and cholines to be unchanged in manic-depressive patients treated with lithium. Proc ISMRM New York 1993;p.1543
  18. Behar KL, Rothman DL, Spencer DD, Petroff O.A.C. Analysis of macromolecule resonances in $^1H$ NMR spectra of human brain. Magn Reson Med 1994;32:294-302 https://doi.org/10.1002/mrm.1910320304
  19. Seeger U, Mader I, Nagele T, Grodd W, Lutz O, Klose U. Reliable detection of macromolecules in single-volume $^1H$ NMR spectra of the human brain. Magn Reson Med 2001;45:948-954 https://doi.org/10.1002/mrm.1127
  20. Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized $^1H$-MR spectra of human brain. Magn Reson Med 2001;46:855-863 https://doi.org/10.1002/mrm.1269
  21. Kim H, Thompson RB, Hanstock CC, Allen PS. The Variability of Metabolite Yield Using STEAM or PRESS Sequences In Vivo at 3.0T Illustrated with Myo-Inositol. Magn Reson Med 2005;53:760-769 https://doi.org/10.1002/mrm.20434
  22. Sorensen OW, Eich GW, Levitt MW, Bodenhausen G, Ernst RR. Product operator formalism for the description of NMR pulse experiments. Prog NMR Spec 1983;16:163-192
  23. Thomson RB, Allen PS. A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate. Magn Reson Med 1998;39:762-771 https://doi.org/10.1002/mrm.1910390514
  24. Ross BD. Biochemical considerations in $^1H$ spectroscopy. Glutamate and glutamine; Myo-inositol and related metabolites. NMR Biomed 1991;4:59-63 https://doi.org/10.1002/nbm.1940040205
  25. Rothman DL, Petroff OAC, Behar KL, Mattson RH. Localized $^1H$ NMR measurements of $\gamma$-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 1993;90:5662-5666 https://doi.org/10.1073/pnas.90.12.5662
  26. de Graaf RA, Rothman DL. Detection of $\gamma$-aminobutyric acid (GABA) by longitudinal scalar order difference editing. J Magn Reson 2001;152:124-131 https://doi.org/10.1006/jmre.2001.2371
  27. Keltner JR, Wald LL, Ledden PJ, Chen YI, Matthews RT, Baker JR, Rosen BR, Jenkins BG. A localized double-quantum filter for the in vivo detection of brain glucose. Magn Reson Med 1998;39:651-656 https://doi.org/10.1002/mrm.1910390420
  28. Keltner JR, Wald LL, Frederick BB, Renshaw PF. In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 1997;37:366-371 https://doi.org/10.1002/mrm.1910370312
  29. Lei H, Peeling J. A localized double-quantum filter for in vivo detection of taurine. Magn Reson Med 1999;42:454-460 https://doi.org/10.1002/(SICI)1522-2594(199909)42:3<454::AID-MRM7>3.0.CO;2-G
  30. McLean MA, Busza AL, Wald LL, Simister RJ, Barker GJ, Williams SR. In vivo GABA + measurement at 1.5 T using a PRESS localized double quantum filter. Magn Reson Med 2002;48:233-241 https://doi.org/10.1002/mrm.10208
  31. Wilman AH, Allen PS. Double-quantum filtering of citrate for in vivo observation. J Magn Reson B 1994;105:58-60 https://doi.org/10.1006/jmrb.1994.1100
  32. Lei H, Peeling J. Simultaneous spectral editing for $\gamma$-aminobutyric acid and taurine using double quantum coherence transfer. J Magn Reson 2000;143:95-100 https://doi.org/10.1006/jmre.1999.1958
  33. Trimble LA, Shen JF, Wilman AH, Allen P S. Lactate editing by means of selective-pulse filtering of both zero-and double-quantum coherence signals. J Magn Reson 1990;86:191-198
  34. Wilman AH, Allen PS. Yield enhancement of a double-quantum filter sequence designed for the edited detection of GABA. J Magn Reson B 1995;109:169-174 https://doi.org/10.1006/jmrb.1995.0006
  35. Trabesinger AH, Weber OM, Duc CO, Boesiger P. Detection of glutathione in the human brain in vivo by means of double quantum coherence filtering. Magn Reson Med 1999;42:283-289 https://doi.org/10.1002/(SICI)1522-2594(199908)42:2<283::AID-MRM10>3.0.CO;2-Q
  36. Sotak CH, Freeman DM, Hurd RE, The unequivocal detection of in vivo lactic acid using two-dimensional double quantum coherence-transfer spectroscopy. J Magn Reson 1988;78:355-361
  37. Jouvensal L, Carlier PG, Bloch G. Practical implementation of single-voxel double-quantum editing on a whole-body NMR spectromenter: localized monitoring of lactate in the human leg during and after exercise. Magn Reson Med 1996;36:487-490 https://doi.org/10.1002/mrm.1910360325
  38. Wilman AH, Allen PS. The response of the strongly coupled AB system of citrate to typical $^1H$ MRS localization sequences. J Magn Reson B 1995;107:25-33 https://doi.org/10.1006/jmrb.1995.1054
  39. Lindon JC, Baker DJ, Farrant RD, Williams JM. $^1H,\;^{13}C\;and\;^{31}P$ n.m.r. spectra and molecular conformation of myo-inositol 1,4,5-triphosphate. Biochem J 1986;233:275-277 https://doi.org/10.1042/bj2330275
  40. Behar KL, Ogino T. Assignment of resonances in the $^1H$ spectrum of rat brain by two-dimensional shift correlated and J-resolved NMR spectroscopy. Magn Reson Med 1991;17:285-303 https://doi.org/10.1002/mrm.1910170202
  41. Matson GB. An integrated program for amplitude-modulated rf pulse generation and re-mapping with shaped gradients. Magn Reson Imaging 1994;12:1205-1225 https://doi.org/10.1016/0730-725X(94)90086-7
  42. Thomson RB, Allen PS. Sources of valiability in the response of coupled spins to the PRESS sequence and their potential impact on metabolite quantification. Magn Reson Med 1999;41:1162-1169 https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1162::AID-MRM12>3.0.CO;2-N
  43. Thomson RB, Allen PS. Response of Metabolites with Coupled spins to the STEAM Sequence. Magn Reson Med 2001;45:955-965 https://doi.org/10.1002/mrm.1128
  44. Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions, Oxford Science Publications, 1997
  45. Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson B 1993;102:9-19 https://doi.org/10.1006/jmrb.1993.1056
  46. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993;30:672-679 https://doi.org/10.1002/mrm.1910300604
  47. Hore PJ. Solvent suppression in fourier transform nuclear magnetic resonance. J Magn Reson 1983;55:283-300
  48. Morris GA, Freeman R. Selective excitation in fourier transform nuclear magnetic resonance. J Magn Reson 1978;29:433-462
  49. Trabesinger AH, Mueller DC, Boesiger P. Single-quantum coherence filter for strongly-coupled spin systems for localized $^1H$ NMR spectroscopy. J Magn Reson 2000;145:237-245 https://doi.org/10.1006/jmre.2000.2086