Abstract
In this study, one of the complicated geotechnical problem, compression index was predicted by a artificial neural network method of Levenberg-Marquardt (LM) algorithm. Predicted values were compared and evaluated by the results of the Back Propagation (BP) method, which is used extensively in geotechnical engineering. Also two different results were compared with experimental values estimated by verified experimental methods in order to evaluate the accuracy of each method. The results from experimental method generally showed higher error than the results of both artificial neural network method. The predicted compression index by LM algorithm showed better comprehensive results than BP algorithm in terms of convergence, but accuracy was similar each other.
본 연구에서는 Levenberg-Marquardt(LM) 알고리즘 인공신경망을 통하여 지반공학 문제 중의 하나인 압축지수를 예측하였고, 예측된 결과는 현재 지반공학에 널리 사용되고 있는 Back Propagation(BP) 알고리즘 인공신경망의 예측 결과와 비교하여 LM 알고리즘의 지반공학 적용성을 평가하였다. 또한 두 알고리즘에 의한 예측치는 기존에 제안된 압축지수의 경험식들에 의하여 산정된 결과들과 비교를 통하여 예측결과의 정확성을 확인하였다. 경험식에 의한 압축지수의 산정치는 전반적으로 BP 알고리즘과 LM 알고리즘 인공신경망에 의한 예측치에 비하여 더 큰 오차를 나타냈다. LM 알고리즘에 의한 압축지수의 예측치는 BP 알고리즘의 예측치와 비교할 때 정확도는 비슷하나 수렴속도에서 더 좋은 결과를 보여 LM 알고리즘의 지반공학 적용성은 우수한 것으로 나타났다.