DOI QR코드

DOI QR Code

ANALYSIS OF PRIVACY-PRESERVING ELEMENT REDUCTION OF A MULTISET

  • Seo, Jae-Hong (DEPARTMENT OF MATHEMATICAL SCIENCES AND ISAC-RIM SEOUL NATIONAL UNIVERSITY) ;
  • Yoon, Hyo-Jin (DEPARTMENT OF MATHEMATICAL SCIENCES AND ISAC-RIM SEOUL NATIONAL UNIVERSITY) ;
  • Lim, Seong-An (DEPARTMENT OF MATHEMATICS INHA UNIVERSITY) ;
  • Cheon, Jung-Hee (DEPARTMENT OF MATHEMATICAL SCIENCES AND ISAC-RIM SEOUL NATIONAL UNIVERSITY) ;
  • Hong, Do-Won (ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE)
  • 발행 : 2009.01.31

초록

The element reduction of a multiset S is to reduce the number of repetitions of an element in S by a predetermined number. Privacy-preserving element reduction of a multiset is an important tool in private computation over multisets. It can be used by itself or by combination with other private set operations. Recently, an efficient privacy-preserving element reduction method was proposed by Kissner and Song [7]. In this paper, we point out a mathematical flaw in their polynomial representation that is used for the element reduction protocol and provide its correction. Also we modify their over-threshold set-operation protocol, using an element reduction with the corrected representation, which is used to output the elements that appear over the predetermined threshold number of times in the multiset resulting from other privacy-preserving set operations.

키워드

참고문헌

  1. R. Agrawal, A. Evfimievski, and R. Srikant, Information sharing across private databases, In SIGMOD 2003, Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pp. 86–97, ACM Press, 2003.
  2. D. Boneh, E.-J. Goh, and K. Nissim, Evaluating 2-DNF formulas on ciphertexts, In TCC 2005, Lecture Notes in Comput. Sci. Vol. 3378, pp. 325–341. Springer-Verlag, 2005.
  3. P.-A. Fouque and D. Pointcheval, Threshold cryptosystems secure against chosenciphertext attacks, In Advances in Cryptology-Asiacrypt 2000, Lecture Notes in Comput. Sci. Vol. 1976, pp. 573–584, Springer-Verlag, 2000.
  4. M. Freedman, K. Nissim, and B. Pinkas, Efficient private matching and set intersection, Advances in cryptology-EUROCRYPT 2004, Lecture Notes in Comput. Sci. Vol. 3027, pp. 1–19, Springer, Berlin, 2004.
  5. O. Goldreich, The Foundations of Cryptography - Vol. 2, Cambridge University Press, 2004.
  6. L. Kissner, Privacy-preserving distributed information sharing, Ph. D. Thesis, 2006, http://www.cs.cmu.edu/ leak/papers/thesis.pdf
  7. L. Kissner and D. Song, Privacy-preserving set operations, Advances in cryptology- CRYPTO 2005, Lecture Notes in Comput. Sci. Vol. 3621, pp. 241–257, Springer, Berlin, 2005.
  8. L. Kissner and D. Song, Private and threshold set-intersection, Technical Report CMU-CS-05-113, Carnegie Mellon University, 2005.
  9. P. Pallier, Public-key cryptosystems based on composite degree residuosity classes, In Advances in Cryptology-Eurocrypt 1999, Lecture Notes in Comput. Sci. Vol. 1592, pp. 223–238, Springer-Verlag, 1999.
  10. J. Seo and H. Yoon, Analysis of privacy-preserving element reduction of a multiset, Memoir of the 2nd cryptology paper contest, arranged by a government organization, pp. 77–91, 2006. https://doi.org/10.4134/JKMS.2009.46.1.059

피인용 문헌

  1. Privacy-preserving disjunctive normal form operations on distributed sets vol.231, 2013, https://doi.org/10.1016/j.ins.2011.07.003