References
- A. Ahmad and M. Imdad, A common fixed point theorem for four mappings satisfying a rational inequality, Publ. Math. Debrecen 41 (1992), no. 3-4, 181–187.
- R. Chugh and S. Kumar, Common fixed points for weakly compatible maps, Proc. Indian Acad. Sci.(Math. Sci.) 111 (2001), no. 2, 241–247. https://doi.org/10.1007/BF02829594
- B. C. Dhage, A fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math. J. 44 (2004), 145–155.
- B. C. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal.(TMA), in press. https://doi.org/10.1016/j.na.2008.03.033
- B. Fisher, Common fixed point and constant mappings satisfying rational inequality, Math. Sem. Notes 6 (1978), 29–35.
- D. H. Griffel, Applied Functional Analysis, Ellis Horwood Limited, Chichester, 1981.
- G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201–206.
- M. Imdad and Q. H. Khan, Six mappings satisfying a rational inequality, Rad. Mat. 9 (1999), 251–260.
- M. Imdad and Javid Ali, Pairwise coincidentally commuting mappings satisfying a rational inequality, Italian J. Pure Appl. Math. 20 (2006), 87–96.
- G. S. Jeong and B. E. Rhoades, Some remarks for improving fixed point theorems for more than two maps, Indian J. Pure Appl. Math. 28 (1997), no. 9, 1177–1196.
- M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Wiley Eastern Limited, New Delhi, 1985.
- G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261–263. https://doi.org/10.2307/2318216
- G. Jungck, Compatible mappings and common fixed points (2), Internat. J. Math. Math. Sci. 11 (1988), 285–288. https://doi.org/10.1155/S0161171288000341
- G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (1996), no. 2, 199–215.
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
- T. I. Khan, A study of common fixed point theorems under certain weak conditions of commutativity, Ph. D. thesis, Aligarh Muslim University, Aligarh, India, 2002.
- P. P. Murthy, Important tools and possible applications of metric fixed point theory, Nonlinear Anal.(TMA) 47 (2001), 3479–3490. https://doi.org/10.1016/S0362-546X(01)00465-5
- R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436–440. https://doi.org/10.1006/jmaa.1994.1437
- R. P. Pant, Common fixed points of four mappings, Bull. Calcutta Math. Soc. 90 (1998), 281–286.
- V. Popa, Some fixed point theorems for weakly compatible mappings, Rad. Mat. 10(2001), 245–252.
- S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (1982), no. 46, 149–153.
- N. Shahzad, Invariant approximations, generalized I-contractions and R-subweakly commuting maps, Fixed Point Theory Appl. 2 (2005), no. 1, 79-86.
- S. L. Singh and S. N. Mishra, Remarks on Jachymski's fixed point theorems for compatible maps, Indian J. Pure Appl. Math. 28 (1997), no. 5, 611–615.
Cited by
- Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application vol.2016, pp.1, 2016, https://doi.org/10.1186/s13663-016-0531-6
- Common fixed points of mappings satisfying implicit contractive conditions vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-105