References
- J. Aczel, Lectures on Functional Equations and Their Applications, Mathematics in Science and Engineering, Vol. 19 Academic Press, New York-London, 1966.
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31. Cambridge University Press, Cambridge, 1989.
- J. A. Baker, On a functional equation of Acz´el and Chung, Aequationes Math. 46 (1993), no. 1-2, 99-111. https://doi.org/10.1007/BF01834001
- J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416. https://doi.org/10.1090/S0002-9939-1980-0580995-3
- J. A. Baker, Functional equations, tempered distributions and Fourier transforms, Trans. Amer. Math. Soc. 315 (1989), no. 1, 57-68. https://doi.org/10.1090/S0002-9947-1989-0979965-5
- J. A. Baker, Distributional methods for functional equations, Aequationes Math. 62 (2001), no. 1-2, 136-142. https://doi.org/10.1007/PL00000134
- J.-Y. Chung, A distributional version of functional equations and their stabilities, Nonlinear Anal. 62 (2005), no. 6, 1037-1051. https://doi.org/10.1016/j.na.2005.04.016
- I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968.
- L. Hormander, The Analysis of Linear Partial Differential Operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256. Springer-Verlag, Berlin, 1983.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser Boston, Inc., Boston, MA, 1998.
- D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. https://doi.org/10.1007/BF01830975
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. https://doi.org/10.1006/jmaa.2000.7046
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.
- L. Szekelyhidi, The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), no. 1, 109-115. https://doi.org/10.1090/S0002-9939-1990-1015685-2
- L. Szekelyhidi, The stability of d'Alembert type functional equations, Acta Sci. Math. (Szeged) 44 (1982), no. 3-4, 313-320.
- I. Tyrala, The stability of d'Alembert's functional equation, Aequationes Math. 69 (2005), no. 3, 250-256. https://doi.org/10.1007/s00010-004-2741-y
- S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York-London, 1960.
- D. V. Widder, The Heat Equation, Academic Press, New York, 1975.
Cited by
- Ulam Problem for the Cosine Addition Formula in Sato Hyperfunctions vol.2015, 2015, https://doi.org/10.1155/2015/615167
- ON THE INITIAL VALUES OF SOLUTIONS OF A GENERAL FUNCTIONAL EQUATION vol.48, pp.2, 2011, https://doi.org/10.4134/BKMS.2011.48.2.387