DOI QR코드

DOI QR Code

THE STABILITY OF THE SINE AND COSINE FUNCTIONAL EQUATIONS IN SCHWARTZ DISTRIBUTIONS

  • Published : 2009.01.31

Abstract

We prove the Hyers-Ulam stability of the sine and cosine functional equations in the spaces of generalized functions such as Schwartz distributions, Fourier hyperfunctions, and Gelfand generalized functions.

Keywords

References

  1. J. Aczel, Lectures on Functional Equations and Their Applications, Mathematics in Science and Engineering, Vol. 19 Academic Press, New York-London, 1966.
  2. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31. Cambridge University Press, Cambridge, 1989.
  3. J. A. Baker, On a functional equation of Acz´el and Chung, Aequationes Math. 46 (1993), no. 1-2, 99-111. https://doi.org/10.1007/BF01834001
  4. J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416. https://doi.org/10.1090/S0002-9939-1980-0580995-3
  5. J. A. Baker, Functional equations, tempered distributions and Fourier transforms, Trans. Amer. Math. Soc. 315 (1989), no. 1, 57-68. https://doi.org/10.1090/S0002-9947-1989-0979965-5
  6. J. A. Baker, Distributional methods for functional equations, Aequationes Math. 62 (2001), no. 1-2, 136-142. https://doi.org/10.1007/PL00000134
  7. J.-Y. Chung, A distributional version of functional equations and their stabilities, Nonlinear Anal. 62 (2005), no. 6, 1037-1051. https://doi.org/10.1016/j.na.2005.04.016
  8. I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968.
  9. L. Hormander, The Analysis of Linear Partial Differential Operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256. Springer-Verlag, Berlin, 1983.
  10. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  11. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser Boston, Inc., Boston, MA, 1998.
  12. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. https://doi.org/10.1007/BF01830975
  13. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.
  14. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. https://doi.org/10.1006/jmaa.2000.7046
  15. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  16. L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.
  17. L. Szekelyhidi, The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), no. 1, 109-115. https://doi.org/10.1090/S0002-9939-1990-1015685-2
  18. L. Szekelyhidi, The stability of d'Alembert type functional equations, Acta Sci. Math. (Szeged) 44 (1982), no. 3-4, 313-320.
  19. I. Tyrala, The stability of d'Alembert's functional equation, Aequationes Math. 69 (2005), no. 3, 250-256. https://doi.org/10.1007/s00010-004-2741-y
  20. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York-London, 1960.
  21. D. V. Widder, The Heat Equation, Academic Press, New York, 1975.

Cited by

  1. Ulam Problem for the Cosine Addition Formula in Sato Hyperfunctions vol.2015, 2015, https://doi.org/10.1155/2015/615167
  2. ON THE INITIAL VALUES OF SOLUTIONS OF A GENERAL FUNCTIONAL EQUATION vol.48, pp.2, 2011, https://doi.org/10.4134/BKMS.2011.48.2.387