• Title/Summary/Keyword: Gelfand generalized functions

Search Result 4, Processing Time 0.016 seconds

REPRESENTATION OF THE GENERALIZED FUNCTIONS OF GELFAND AND SHILOV

  • Jae Young Chung;Sung Jin Lee
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.607-616
    • /
    • 1994
  • I. M. Gelfand and G. E. Shilov [GS] introduced the Gelfand-Shilov spaces of type S, generalized type S and type W of test functions to investigate the uniqueness of the solutions of the Cauchy problems of partial differential equations. Using the heat kernel method Matsuzawa gave structure theorems for distributions, hyperfunctions and generalized functions in the dual space $(S^s_r)'$ of the Gelfand-Shilov space of type S in [M1, M2 and DM], respectively. Also, we gave structure theorems for ultradistributions, Fourier hyperfunctions in [CK, KCK], respectively.

  • PDF

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM

  • Chung, Jaeyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1157-1169
    • /
    • 2016
  • We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.