Abstract
In conventional method, flight model is discribed to differential equation by linealization of nonlinear object motion equation. As state equation from differential equation of moving object, the controller is designed by transfer functions of each module under discrimination of stability criteria. But this conventional method is designed under limitation of nonlinearity from object's shape and speed. In other word, The greater part of guidance/navigation system was satisfied with the result of good performance for normal figure of flight object, not sudden changed flight condition, not high speed. But it is not able to give full play to its ability on flight object which has abnormal figure, sudden changeable motion, high speed. Therefore, in this paper was presented performance analysis of load control model for navigation/guidance system on flying object being uncertainty, non-linear like abnormal figure, sudden changeable motion, high speed and is presented method of trajectory control(controllability) ahead of controllability and stability to achieve flight mission. In other word, this paper shows the first step of Min-design method and flight control model.
기존의 방법에서는 비선형 운동 물체의 운동 방정식을 선형화하므로써 비행체의 운동 상태방정식을 구하고, 각 제어 기관에 따라 전달함수를 구하여 안정성 판별과 더불어 제어기를 설계하였다. 이러한 설계 방법으로는 일반적인 비행기와 같은 형태, 비행 환경이 급격하게 변하지 않고 속도가 빠르지 않는 비행체의 유도/제어기 설계에 많이 사용되어 많은 성능을 발휘할 수 있다. 그러나 이러한 설계 방법은 통상적이지 않는 비행체 형태뿐만 아니라 빠른 속도에서 급격한 움직임을 갖는 비행체에서는, 기존의 유도/제어기 설계 방법으로는 이러한 비선형성으로 인하여 제어성(경로문제)과 안정성(안정화문제)을 동시에 충족할만한 성능을 발휘 할 수 없다. 따라서 본 논문에서는 이러한 불확실성이 내포된 비행체 제어 문제에서 제어성과 안정성을 동시에 충족시키기 위한 과정 중 먼저 제어성 문제를 해결하기 위한 비행체 제어성을 분석하고 모델을 제시한다. 또한 본 논문에서 비행체 모델과 동역학 모델에서 제어 요소로서 하중(중력수)을 설정하고 비행 특성에 따른 제어요소 값을 살펴본다. 이것은 Min 설계 방법 1단계이다.