A Study on the Adsorptive Removal of Heavy Metals Using Inflated Vermiculites

팽창질석을 이용한 중금속 흡착제거에 관한 연구

  • 이준기 (부경대학교 환경해양대학 환경공학과 대학원) ;
  • 고태훈 (한국철도기술연구원 신소재틸팅열차시스템연구단) ;
  • 김수경 (부경대학교 환경해양대학 환경공학과 대학원) ;
  • 이태윤 (부경대학교 환경해양대학 환경공학과)
  • Received : 2009.04.14
  • Accepted : 2009.06.25
  • Published : 2009.10.01

Abstract

The main objective of this study was to examine the removal of heavy metals from water by inflated vermiculites. The component of vermiculites was analyzed by XRF, and the concentration of metal ion was measured by ICP-AES. Serial batch kinetic tests and batch sorption tests were conducted to determine the removal characteristics for heavy metals in aqueous solutions. As a result, solution pH values of tests with the inflated vermiculites generally increased and then stabilized. Equilibrium pHs were generally established within 5 hrs. In addition, removal rates of inflated vermiculites were tested at the initial concentration of 3 mg/L. As a result, at equilibrium concentration, except for chromium (36.23%), Most of the heavy metals were effectively removed (96.08~98.54%). Finally, sorption data were correlated with both Langmuir and Freundlich isotherms. The Qmax obtained from Langmuir isotherm were determined to Pb $725.4mg\;kg^{-1}$, Cd $568.8mg\;kg^{-1}$, Zn $540.2mg\;kg^{-1}$, Cu $457.2mg\;kg^{-1}$ Cr $0.9mg\;kg^{-1}$ respectively. The results of the study indicate that inflated vermiculites can be properly used as an adsorbent for various heavy metals because of its outstanding removal rate.

본 연구에서는 팽창질석을 이용하여 중금속 흡착 제거능을 평가 하고자 하였다. 먼저 XRF를 사용하여 질석의 화학적 조성을 분석하였고, 시료중의 중금속 농도분석은 ICP-AES를 사용하여 이루어졌다. 수용액 상의 중금속 제거 특성을 살펴보기 위해 Batch kinetic test와 batch sorption test가 실시되었으며 그 결과, 시료용액의 pH가 증가하는 양상을 보이다가 약 5시간 경과 후 pH가 평형상태에 도달함을 알 수 있었다. 그리고 $3mg\;L^{-1}$의 초기농도로 실시된 실험에서 평형농도(1680분 후)에서의 제거율이 각각 Pb: 98.54%, Cd: 96.82%, Cu: 96.08%, Zn: 96.71%, Cr: 36.23%로 크롬을 제외한 모든 중금속 성분이 90% 이상의 높은 제거율을 나타내어 선별적이지만 중금속이 효과적으로 제거됨을 확인 할 수 있었다. 최종적으로 batch sorption test를 통해 얻은 결과를 각각 Freundlich와 Langmuir 등온흡착식에 대입한 결과 두 가지 등온흡착식 모두에서 흡착용량이 Pb>Cd>Cu>Zn>Cr의 순서로 나타났으며, Langmuir model을 통해 알아낸 최대흡착용량(Qmax)은 Pb $725.4mg\;kg^{-1}$, Cd $568.8mg\;kg^{-1}$, Zn $540.2mg\;kg^{-1}$, Cu $457.2mg\;kg^{-1}$ Cr $0.9mg\;kg^{-1}$로 나타나 크롬을 제외한 나머지 중금속에 대한 높은 흡착 제거능을 보임으로써 흡착제로써의 적용이 가능하다는 결론을 얻을 수 있었다.

Keywords

Acknowledgement

Supported by : 기상청

References

  1. 강성원 (2005), 도시지역 불투수면의 오염물질 유출저감을 위한 소재의 개발 및 표면 특성 평가, 대한환경공학회 추계학술연구발표회 논문집, pp. 819-824.
  2. 김부길, 박한주, 김일룡 (2008), 탄화물 및 제올라이트 여재를 사용하는 UNFS(Upflow Non-point source Filtering System) 시설의 노면배수에 함유된 중금속 제거 특성, 한국환경과학회지, Vol. 17, No. 10, pp. 1147-1154.
  3. 김석구, 김영임, 강성원, 윤상린, 김소정 (2006), 강우에 의한 도로 비점오염원 유출 특성, 대한환경공학회지, Vol. 28, No. 1, pp. 104-110.
  4. 방기웅, 이준호, 최창수, 이상일 (2007), 필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교, 대한환경공학회지, Vol. 29, No. 3, pp. 332-340.
  5. 엄태호, 김유택 (2003), 처리조건에 따른 중금속 이온의 안정화 거동, 한국세라믹학회지, Vol. 40, No. 6, pp. 583-588.
  6. 정덕영, 노현희 (2005), 사질식양토와 식토에서 중금속 이온의 다중경쟁 흡착, 한국토양비료학회지, Vol. 38, No. 5, pp. 238-246.
  7. 최원석, 송창수, 김석구 (2008), 도로노면 유출수 처리를 위한 여과에서의 여재별 손실수두 특성, 상하수도학회지, Vol. 22, No. 6, pp. 697-704.
  8. Amuda, O. S., Giwa, A. A., Bello, I. A. (2007), Removal of Heavy Metal from Industrial Wastewater using Modified Activated Coconut Shell Carbon, Biochemical Engineering Journal, Vol. 36, No. 2, pp. 174-181. https://doi.org/10.1016/j.bej.2007.02.013
  9. Borchardt D. and Sperling, F. (1997), Urban Stormwater Discharges: Ecological Effects on Receiving Waters and Consequences for Technical Measures, Water Science & Technology, Vol. 36, No. 8-9, pp. 173-178.
  10. Brown, J. N. and Peake, B. M. (2006), Sources of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Urban Stormwater Runoff, Science of the Total Environment, Vol. 359, No. 1-3, pp. 145-155. https://doi.org/10.1016/j.scitotenv.2005.05.016
  11. Han, X., Wong, Y. S., Tam, N. F. Y. (2006), Surface Complexation Mechanism and Modeling in Cr(III) Biosorption by a Microalgal Isolate, Chlorella Miniata, Journal of Colloid and Interface Science, Vol. 303, No.2, pp. 365-371. https://doi.org/10.1016/j.jcis.2006.08.028
  12. Hoffman, E., Mills, G., Latimer, J. S., Quinn, J. G. (1984), Urban Runoff as a Source of Polycyclic Aromatic Hydrocarbons to Coastal Waters, Environmental Science & Technology, Vol. 18, No. 8, pp. 580-587. https://doi.org/10.1021/es00126a003
  13. Iwashita, A., Nakajima, T., Takanashi, H., Ohki, A., Fujita, Y., Yamashita, T. (2007), Determination of Trace Elements in Coal and Coal Fly Ash by Joint-use of ICP-AES and Atomic Adsorption Spectrometry, Science Direct-Talanta, Vol. 71, No. 1, pp. 251-257.
  14. Jain, C. K. and Sharma, M. K. (2002), Adsorption of Cadmium on Bed Sediments of River Hindon: Adsorption Model and Kinetics, Water, Air and Soil Pollution, Vol. 137, No. 1-4, pp. 1-19. https://doi.org/10.1023/A:1015530702297
  15. Kayhanian, M., Stransky, C., Bay, S., Laud, S.-L., Stenstrom, M. K. (2008), Toxicity of Urban Highway Runoff with Respect to Storm Duration, Science of the Total Environment, Vol. 389, No. 1-3, pp. 386-406. https://doi.org/10.1016/j.scitotenv.2007.08.052
  16. Koppensteiner, B. (1998), The Degradation of the Herbicides Alachlor and Metolachlor by Iron Metal in Water and Soil Systems, M.S. dissertation, University of Wisconsin Madison, pp. 1-83.
  17. Koppensteiner, B. (1998), The Degradation of the Herbicides Alachlor and Metolachlor by Iron Metal in Water and Soil Systems, M.S. dissertation, University of Wisconsin Madison, pp. 1-83.
  18. Murakami, M., Nakajima, F., Furumai, H. (2005), Size and Density Distributions and Sources of Polycyclic Aromatic Hydrocarbons in Urban Road Dust, Chemosphere, Vol. 61, No. 6, pp. 783-791. https://doi.org/10.1016/j.chemosphere.2005.04.003
  19. Murakami, M., Nakajima, F., Furumai, H., Tomiyasu, B., Owari, M. (2007), Identification of Particles Containing Chromium and Lead in Road Dust and Soakaway Sediment by Electron Probe Microanalyser, Chemosphere, Vol. 67, No. 10, pp. 2000-2010. https://doi.org/10.1016/j.chemosphere.2006.11.044
  20. Naiya, T. K., Chowdhury, P., Bhattacharya, A. K., Das, S. K. (2009), Saw Dust and Neem Bark as Low-cost Natural Biosorbent for Adsorptive Removal of Zn(II) and Cd(II) Ions from Aqueous Solutions, Chemical Engineering Journal, Vol. 148, No. 1, pp. 68-79. https://doi.org/10.1016/j.cej.2008.08.002
  21. Passos, G. G., Ribaski, F. S., Simon, N. M., dos Santos, A. A., Vaghetti, J. C. P., Benvenutti, E. V., Lima, E. C. (2006), Use of Statistical Design of Experiments to Evaluate the Sorption Capacity of 7-amine-4-azaheptylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II), and Fe(III) Adsorption, Journal of Colloid and Interface Science, Vol. 302, No. 2, pp. 396-407. https://doi.org/10.1016/j.jcis.2006.06.052
  22. Sansalone, J. J., Buchberger, S. G. (1997), Characterization of Solid and Metal Element Distributions in Urban Highway-Stormwater, Water Science & Technology, Vol. 36, No. 8-9, pp. 155-160.
  23. Wark, M., Lutz, W., Schulz-Ekloff, G., Dyer, A. (1994), Quantitative Monitoring of Side Products during High Loading of Zeolites by Heavy Metals, Zeolites, Vol. 13, No. 18, pp. 658-670. https://doi.org/10.1016/0144-2449(93)90139-T
  24. Walker, W. J., McNutt, R. P., Maslanka, C. A. (1999), The Potential Contribution of Urban Runoff to Surface Sediments of the Passaic River: Sources and Chemical Characteristics, Chemosphere, Vol. 38, No. 2, pp. 363-377. https://doi.org/10.1016/S0045-6535(98)00186-6
  25. Weber Jr., W. J. (1972), Physico-chemical Processes for Water Quality Control, John Wiley and Sons, Inc., N.Y. pp. 208-210.
  26. Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., Dorris, K. L. (2000), The Removal of Heavy Metal from Aqueous Solutions by Sawdust Adsorption-Removal of Copper, Journal of Hazardous Materials, Vol. 80, No. 1-3, pp. 33-42. https://doi.org/10.1016/S0304-3894(00)00278-8