DOI QR코드

DOI QR Code

Accuracy of Electronic Pedometers to Assess Body Fatness in Obese Children and Youth

비만 어린이와 청소년들의 체지방 평가를 위한 electronic pedometer 의 정확성 분석

  • Kim, Do-Yeon (Department of Health, Excercise and Sports Sciences, University of New Mexico)
  • 김도연 (뉴멕시코대학교, 스포츠과학과)
  • Published : 2009.10.30

Abstract

The purpose of this study was to assess the influence of waist size on the reliability and validity of pedometers to count steps in children and youth. The participants for this study were 20 children and youth, composed of 14 Hispanic and 6 Caucasian children. Ten children and youth had waist circumferences greater than the $85^{th}$ percentile (Body Mass Index (BMI)=$28.91\pm3.07$), and 10 children and youth had waist circumferences smaller than the $50^{th}$ percentile (BMI=$18.05\pm1.55$). To examine pedometer reliability, each child completed 3 ascent and descent trials up a set of 15 stairs while wearing a Yamax SW-701 pedometer. The main effect of trials was not statistically significant for the stair ascent trials F (2, 36)=2.575 or for the descent trials F (2, 36)=0.235. The trial by group interaction was also not statistically significant. To examine the influence of waist circumference on the validity of the pedometer in counting walking steps at a self-selected walking pace, the children and youth in the two groups completed a 400-m course. The main effect on the groups was statistically significant, F (1, 18)=7.489. The main effect of counting techniques was not statistically significant, F (1, 18)=2.983 (hand-counted vs. pedometer counted). Overall, the trial and trial by group interaction comparisons for the 400-m walk were not statistically significant, suggesting that the pedometer was equally valid as a tool for assessing walking steps in high waist circumference (HWC) and low waist circumference (LWC) in children and youth.

본 연구는 미국 유타주에 거주하는 10-15세 어린이와 청소년들의 허리둘레가 electronic pedometer (전자 보수계)의 타당성과 신뢰성에 미치는 영향을 분석하기 위하여 비만집단 10명(HWC, BMI $28.91\pm3.07$)과 일반집단 10명 (LWC, BMI $18.05\pm1.55$)으로 총 20명(14 Hispanic and 6 Caucasian)의 어린이와 청소년들을 대상으로 실시하였다. Electronic pedometer 의 신뢰성을 측정하기 위하여 각 어린이는 Yamax SW-701 electronic pedometer 를 허리에 차고 15계단 오르기와 15계단 내리기를 3 sets 실시한 결과, HWC 집단이 LWC 집단보다 더 많은 보수를 기록했으나 오르기와 내르기 시행의 주 효과는 유의한 차이가 없었고, 또 두 집단간의 상호작용에도 유의한 차이가 없었다. 보수를 측정하여 pedometer의 타당성에 허리둘레가 미치는 영향을 분석하기 위하여 각자의 보행 속도에 따라 400 m를 걷게 한 결과 주 효과는 두 집단 간에 유의한 차이가 있었으나 counting technique (hand-counted vs. pedometer counted)의 주 효과는 유의한 차이가 없었으며, 또 400 m 걷기의 시기와 group별 시기의 상호작용도 유의한 차이가 없었다. 이러한 결과는 pedometer가 walking steps 측정에 HWC 집단과 LWC 집단에 동일하게 타당도가 있음을 나타내고 있다. 추후의 연구에서는 어린이들의 walking speed, pedometer tilt angle, leg length, 및 stride length 등을 고려한 연구가 필요하다고 사료된다.

Keywords

References

  1. Burdette, H. L. and R. C. Whitaker. 2005. Resurrecting free play in young children. Arch. Pediat. Adolesc Med. 159, 46-50 https://doi.org/10.1001/archpedi.159.1.46
  2. Crouter, S. E., P. L., Schneider, M., Karabulut, and D. R. Bassett. 2003. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med. Sci. Sports Exerc. 35, 1455-1460 https://doi.org/10.1249/01.MSS.0000078932.61440.A2
  3. Eston, R. G, A. V. Rowlands, and D. K. Ingledew. 1998. Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children's activities. J. Appl. Physiol. 84, 362-371 https://doi.org/10.1186/1479-5868-5-45
  4. Goran, M. L., G. D. Ball, and M. L. Cruz. 2003. Obesity and risk of type 2 diabetes and cardiovascular disease children and adolescents. J. Clin. Endocrinol. Metab. 88, 1417-1427 https://doi.org/10.1210/jc.2002-021442
  5. Gordon-Larsen, P., R. G McMurray, and B. M. Popkin. 2000. Determinants of adolescent physical activity and in activity patterns. Pediatrics. 105, e83 https://doi.org/10.1542/peds.105.6.e83
  6. Kilanowski, C. K, A. R. Consalvi, and L. H. Epstein. 1999. Validation of an electronic pedometer for measurement of physical activities in children. Pediatr. Exerc. Sci. 11, 63-68
  7. Lohman, T. G., A. F. Roche, and R. Martorell. 1988. Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Publishers, Inc
  8. Melanson, E. L., J. R. Knolt M., L. Belt W. T. Donahoo, J. O. Hilt 1. J. Nysse, 1. Lanningham-Foster, J. c. Peters, and J. A. Levine. 2004. Commercially available pedometers: considerations for accurate step counting. Prevo Med. 39, 361-368 https://doi.org/10.1016/j.ypmed.2004.01.032
  9. Mikami, S., K Mimura, S. Fujimoto, and O. Bar-Or. 2003. Physical activity, energy expenditure and intake in 11 to 12 years old Japanese prepubertal obese boys. J. Physiol. Anthropol. Appl. Hum. Sci. 22, 53-60 https://doi.org/10.2114/jpa.22.53
  10. National Institute of Health (NIH). 2000. The practical guide. Identification, evaluation, and treatment of overweight and obesity in adults. NIH Publication
  11. Ohrvalt M., L. Berglund, and B. Vessby. 2000. Sagittal abdominal diameter compared with other anthropometric measurements in relation to cardiovascular risk. Int. J. Obes. 24, 497-501 https://doi.org/10.1038/sj.ijo.0801186
  12. Rosner, B., R. Prine as, J. Loggie, and S. R. Daniels. 1998. Percentiles for body mass index in U.s. children 5 to 17 years of age. J. Pediatr. 132, 211-222 https://doi.org/10.1016/S0022-3476(98)70434-2
  13. Rowlands, A. V., R. G. Eston, and D. K Ingledew. 1999. Relationship between activity levels, aerobic fitness, and body fat in 8-10-yr-old children. J. Appl. Physiol. 86, 1428-1435
  14. Schmalzried, T. P., E. S. Szuszczewicz, M. R. Northfield, K H. Akizuki, R. E. Franket G. Belcher, and H. C. Amstutz 1998. Quantitative assessment of walking activity after total hip or knee replacement. J. Bone Joint Surg. 80, 54-59 https://doi.org/10.1302/0301-620X.80B1.7739
  15. Schneider, P. L., S. E. Crouter, O. Lukajic, and D. R. Bassett. 2003. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med. Sci. Sports Exerc. 35, 1779-1784 https://doi.org/10.1249/01.MSS.0000089342.96098.C4
  16. Schneider, P. L., S. E. Crouter, and D. R. Bassett. 2004. Pedometer measures of free-living physical activity:Comparison of 13 models. Med. Sci. Sports Exerc. 36, 331-335 https://doi.org/10.1249/01.MSS.0000113486.60548.E9
  17. Shepherd, E. F., E., Toloza, C. D., McClung, and T. P. Schmalzried. 1999. Step activity monitor: Increased accuracy in quantifying ambulatory activity. J. Orthop. Res. 17, 703-708 https://doi.org/10.1002/jor.1100170512
  18. Swartz, A. M., D. R. Bassett, J. B. Moore, D. 1. Thompson, and S. J. Strath. 2003. Effects of body mass index on the accuracy of an electronic pedometer. Int. J. Sports Med. 24, 588-592 https://doi.org/10.1055/s-2003-43272
  19. U.S. Department of Health and Human Services. 1996. Physical activity and health: A Report of the Surgeon General. Atlanta, GA: USDHHS, Center for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotionc
  20. Vincent, S. D., R. P. Pangrazi, A. Raustorp, L. M. Tomson, and T. F. Cuddihy. 2003. Activity levels and body mass index of children in the United States, Sweden, and Australia. Med. Sci. Sports Exerc.35, 1367-1373 https://doi.org/10.1249/01.MSS.0000079024.40014.91
  21. Vincent, S. D. and C. L. Sidman. 2003. Determining measurement error in digital pedometers. Meas. Phys. Educ. Exerc. Sci. 7, 19-24 https://doi.org/10.1207/S15327841MPEE0701_2
  22. Welk G. L C. B., Corbin, and D. Dale. 2000. Measurement issues in the assessment of physical activity in children. Res. Q. Exerc. Sport. 71, S59-S73