TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • 발행 : 2009.01.31

초록

The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

키워드

참고문헌

  1. J. Duinker, and G. Wefer, Das CO_2-Problem und die Rolle des Ozeans, Naturwissenschahten, 81(1994), 237-242. https://doi.org/10.1007/BF01131574
  2. A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow and B.L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44(2002), 311-370. https://doi.org/10.1137/S0036144502404442
  3. R.J. Charlson, J.E. Lovelock, M.O. Andreae and S.G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326(1987),655-661. https://doi.org/10.1038/326655a0
  4. P. Williamson and J. Gribbin, How plankton change the climate, March 16(1991), 48-52.
  5. E.F. Stoermer and J.P. Smol, The Diatoms, Cambridge University press, UK, 1999.
  6. D.M. Anderson, Toxic algal blooms and red tides : a global perspective. In: Okaichi, T., Anderson, D.M., Nemoto, T. (Eds.) Red Tides : Biology, Environmental Science and Toxicology, Elsevier, New York, U.S.A., pp. 11-21, 1989.
  7. T. Smayda, Novel and nuisance phytoplankton blooms in the sea : evidence for a global epidemic. In : Graneli, E., Sundstrom, B., Edler, L., Anderson, D.M. (Eds.) Toxic Marine Phytoplankton, Elsevier, New York, USA, pp. 29-40, 1990.
  8. G.M. Hallegraeff, A review of harmful algae blooms and the apparent global increase, Phycologia, 32(1993), 79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  9. R.R. Sarkar and J. Chattopadhyay, Occurrence of plankton blooms under environmental fluctuations and its possible control mechanism - mathematical models and experimental observations, J. Theor. Biol., 224(2003), 501-516. https://doi.org/10.1016/S0022-5193(03)00200-5
  10. J. Chattopadhyay, R.R. Sarkar, and A.E. Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA. J. Math. Appl. Med. Biol., 19(2002),137-161. https://doi.org/10.1093/imammb/19.2.137
  11. J. Chattopadhyay, R.R. Sarkar and S. Mandal, Toxin producing plankton may act as a biological control for planktonic blooms - field study and mathematical modelling, J. Theor. Biol., 215(2002), 333-344. https://doi.org/10.1006/jtbi.2001.2510
  12. T.M. Work et.al., Domonic acid in toxication of brown pelicans and cormorants in Santa Cruz, California. Toxic Phytoplankton Blooms in the Sea, 3 T.J. Smayda and Y. Shimuza (eds.), Elsevier, pp. 643-649, 1993.
  13. K.A. Steidinger et.al., Pfiesteria Piscicida a new toxic dinoflagellate genus and species of the order Dinamoebales, J. Phycology, 32(1996),157-164. https://doi.org/10.1111/j.0022-3646.1996.00157.x
  14. T.G. Nielsen et.al., Effects of a Chrysochromulina polylepis subsurface bloom on the plankton community, Marine Ecology Progress Series, 62(1990), 21-35. https://doi.org/10.3354/meps062021
  15. J. Aure and F. Rey, Oceanographic conditions in the Sandsfjord System, Western Norway, after a bloom of the prymnesiophyte Prymnesium parvum Carter in August 1990, Sarsia, 76(1992), 247-254. https://doi.org/10.1080/00364827.1992.10413480
  16. J.M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, Heidelberg, New York,1977.
  17. S. Ruan, The effect of delays on stability and persistence in plankton models, Nonlinear Analysis, 24(1995), 575-585. https://doi.org/10.1016/0362-546X(95)93092-I
  18. X.-Z. He, S. Ruan and H. Xia, Global stability in chemostat-type equations with distributed delays, Siam. J. Math. Anal., 29(1998), 681-696. https://doi.org/10.1137/S0036141096311101
  19. E. Beretta and Y. Takeuchi, Qualitative properties of chemostat equations with time delays : boundedness, local and global asymptotic stability, Diff. Eqn. and Dyn. Syst., 2(1994), 19-40.
  20. D.H. Cushing, A difference in structure between ecosystems in strongly stratified waters and those that are only weakly stratified, J. Plank. Res., 11(1989), 1-13. https://doi.org/10.1093/plankt/11.1.1
  21. T. Kiorboe, Turbulence, phytoplankton cell size and the structure of pelagic food webs, Adv. Mar. Biol., 29(1993), 1-72. https://doi.org/10.1016/S0065-2881(08)60129-7
  22. C.H. Greene, E.A. Widder, M.J. Youngbluth and A. Tamse, The migration behavior, fine structure and bioluminescent activity of krill sound-scattering layer, Limnol. ceanogr., 37(1992), 650-658. https://doi.org/10.4319/lo.1992.37.3.0650
  23. S.V. Petrovskii and H. Malchow, Wave of chaos : new mechanism of pattern formation in spatiotemporal population dynamics, Theor. Popul. Biol., 59(2001), 157-174. https://doi.org/10.1006/tpbi.2000.1509
  24. K.L. Denman, Covariability of chlorophyll and temperature in the see, Deep Sea Res., 23(1976), 539-550.
  25. L.H. Weber, S.Z. El-Sayed and I. Hampton, The variance spectra of phytoplankton, krill and water temperature in the antarctic ocean south of Africa, Deep Sea Res., 33(1986), 1327-1343. https://doi.org/10.1016/0198-0149(86)90039-7
  26. T.M. Powell, P.J. Richerson, T.M. Dillon, B.A. Agee, B.J. Dozier, D.A. Godden and L.O. Myrup, Spatial scales of current speed and phytoplankton biomass fluctuations in Lake Tahoe, Science, 189(1975), 1088-1090. https://doi.org/10.1126/science.189.4208.1088
  27. A.P. Martin and K.G. Richards,Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. II 48(2001), 757-773. https://doi.org/10.1016/S0967-0645(00)00096-5
  28. E.R. Abraham, The generation of plankton patchiness by turbulent stirring, Nature, 391(1998), 577-580. https://doi.org/10.1038/35361
  29. A. Oschlies and V. Garcon, Eddy-induced enhancement of primary productivity in a model of the North Atlantic, Nature, 398(1998), 266-268. https://doi.org/10.1038/18489
  30. G.R. Flierl and C.S. Davis, Biological effects of Gulf-stream meandering, J. Marine Res., 51(1993), 529-560. https://doi.org/10.1357/0022240933224016
  31. A.M. de Roos, E. McCawley and W.G. Wilson, Pattern formation and the scale of interaction between predators and their prey, Theor. Popul. Biol., 52(1998), 108-130.
  32. C.L. Folt and C.W. Burns, Biological drivers of zooplankton patchiness, Trends Ecol. Evol., 14(1999), 300-305. https://doi.org/10.1016/S0169-5347(99)01616-X
  33. A.M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behavior of plankton population model, Bull. Math. Biol., 61(1999), 303-339. https://doi.org/10.1006/bulm.1998.0082
  34. W.J.C. Gurney and R. Veitch, Self organisation, scale and stability in a spatial predator-prey interaction, Bull. Math. Biol., 62(2000), 61-86. https://doi.org/10.1006/bulm.1999.0130
  35. V.N. Biktashev and J. Brindley, Phytoplankton blooms and fish recruitment rate : Effects of spatial distribution, Bull. Math. Biol., 66(2004), 233-259. https://doi.org/10.1016/j.bulm.2003.08.008
  36. J.D. Murray, Mathematical Biology-II Spatial Models and Biomedical Application,Springer Verlag, Berlin, 2003.
  37. A. Okubo, Diffusion and Ecological Problems : Modern Perspective, Interdisciplinary Applied Math., 14, Springer, 2001.
  38. N. Shigesada and K. Kawasaki, Biological Invasion : Theory and Practice, Oxford University Press, 1997.
  39. A.M. Turing, On the chemical basis of morphogenesis, Philos. Trans. R. Soc. London, B 237(1952), 37-72. https://doi.org/10.1098/rstb.1952.0012
  40. L.A. Segel and J.L. Jackson, Dissipative structure : An explanation and ecological example, J. Theor. Biol., 37(1972), 545-559. https://doi.org/10.1016/0022-5193(72)90090-2
  41. A.B. Rovinsky andM. Menzinger,Chemical instability induced by a differential flow, Phys.Rev. Lett. 69(1992), 1193-1196. https://doi.org/10.1103/PhysRevLett.69.1193
  42. S. Ruan, Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling, IMA J. Appl. Math., 61(1998), 15-32. https://doi.org/10.1093/imamat/61.1.15
  43. K. Bousaba and S. Ruan, Instability in diffusive ecological models with nonlocal delay effects, J. Math. Anal. Appl., 258(2001), 269-286. https://doi.org/10.1006/jmaa.2000.7381
  44. S.A. Gourley and N.F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34(1996), 297-333. https://doi.org/10.1007/BF00160498
  45. B. Mukopadhyay and R. Bhattacharyya, A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms, J. Biol. Phy., 31(1)(2005), 3-22. https://doi.org/10.1007/s10867-005-2306-x
  46. B. Mukopadhyay and R. Bhattacharyya, Modelling phytoplankton allelopathy in anutrient-plankton model with spatial heterogeneity, Ecol. Model., 198(1-2)(2006), 163-173. https://doi.org/10.1016/j.ecolmodel.2006.04.005