FIXED POINT THEOREMS FOR SIX WEAKLY COMPATIBLE MAPPINGS IN $D^*$-METRIC SPACES

  • Sedghi, Shaban (Department of Mathematics, Islamic Azad University-Ghaemshahr Branch) ;
  • Khan, M. S. (Department of Mathematics and Statistics, College of Science, Sultan Qaboos University) ;
  • Shobe, Nabi (Department of Mathematics, Islamic Azad University-Ghaemshahr Branch)
  • Published : 2009.01.31

Abstract

In this paper, we give some new definitions of $D^*$-metric spaces and we prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in complete $D^*$-metric spaces. We get some improved versions of several fixed point theorems in complete $D^*$-metric spaces.

Keywords

References

  1. M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181-188. https://doi.org/10.1016/S0022-247X(02)00059-8
  2. I.Altun, H.A.Hancer and D.Turkoglu, A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces, Math. Communications 11(2006),17-23.
  3. N.A.Assad and S.Sessa, Common fixed points for nonself-maps on compacta, SEA Bull.Math. 16 (1992), 1-5.
  4. N.Chandra, S.N.Mishra, S.L.Singh and B.E.Rhoades, Coincidences and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math.26 (1995), 393-401.
  5. Y.J.Cho, P.P.Murthy and G.Jungck, A common fixed point theorem of Meir and Keeler type, Internat. J. Math.Sci. 16 (1993), 669-674. https://doi.org/10.1155/S0161171293000833
  6. R.O.Davies and S.Sessa, A common fixed point theorem of Gregus type for compatible mappings, Facta Univ. (Nis) Ser. Math. Inform. 7 (1992), 51-58.
  7. B.C.Dhage, Generalised metric spaces and mappings with fixed point, Bull. CalcuttaMath.Soc.84(1992),329-336.
  8. J.Jachymski, Common fixed point theorems for some families of maps, Indian J.Pure Appl. Math. 55 (1994), 925-937.
  9. G.Jungck , Commuting maps and fixed points, Amer Math Monthly 83(1976),261–3. https://doi.org/10.2307/2318216
  10. G.Jungck and Rhoades B. E, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998),3,227-238.
  11. S.M.Kang, Y.J.Cho and G.Jungck, Common fixed points of compatible mappings, Internat.J.Math. Math. Sci. 13 (1990), 61-66. https://doi.org/10.1155/S0161171290000096
  12. W. Liu, J. Wu and Z. Li, Common fixed points of single-valued and multi-valued maps,Internat J. Math. Math. Sci. 9 (2005), 3045-3055.
  13. D.Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144(2004),431-439. https://doi.org/10.1016/S0165-0114(03)00305-1
  14. S.V.R.Naidu, K.P.R Rao and N.Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat.J.Math. Math.Sci. 51(2004),2719-2740.
  15. S.V.R.Naidu, K.P.R Rao and N.Srinivasa Rao, On the concepts of balls in a D- metric space, Internat.J.Math.Math.Sci.1(2005),133-141.
  16. S.V.R.Naidu, K.P.R Rao and N.Srinivasa Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat.J.Math.Math.Sci. 12(2005),1969-1988.
  17. B.E.Rhoades, A fixed point theorem for generalized metric spaces, Internat.J.Math.Math.Sci.19(1996),145-153. https://doi.org/10.1155/S016117129600021X
  18. M.Imdad, S.Kumar and M.S.Khan, Remarks on some fixed point theorems satisfying implicit relation, Rad. Math.11(2002),135-143.
  19. B.E.Rhoades, K.Tiwary and G.N.Singh, A common fixed point theorem for compatible mappings, Indian J.Pure Appl. Math. 26 (5) (1995),403-409.
  20. S.Sessa and Y.J.Cho, Compatible mappings and a common fixed point theorem of Chang type, Publ. Math. Debrecen 43 (3-4) (1993),289-296.
  21. S.Sessa, B.E.Rhoades and M.S.Khan, On common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 11 (1988),375-392. https://doi.org/10.1155/S0161171288000444
  22. S.Sharma and B.Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J.Math. 33(2002), 245-252.
  23. B.Singh and R.K.Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat.11 (2002),145-153.
  24. V.Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math.33(2000),159-164.
  25. K.Tas, M.Telci and B. Fisher, Common fixed point theorems for compatible mappings, Internat. J.Math. Math. Sci. 19 (3) (1996), 451-456. https://doi.org/10.1155/S0161171296000646