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FIXED POINT THEOREMS FOR SIX WEAKLY COMPATIBLE
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ABSTRACT. In this paper, we give some new definitions of D*-metric spaces
and we prove a common fixed point theorem for six mappings under the
condition of weakly compatible mappings in complete D*-metric spaces.
We get some improved versions of several fixed point theorems in complete
D*-metric spaces.
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1. Introduction and preliminaries

In 1922, the Polish mathematician, Banach, proved a theorem which ensures,
under appropriate conditions, the existence and uniqueness of a fixed point.His
result is called Banach’s Fixed Point Theorem or the Banach Contraction Prin-
ciple. This theorem provides a technique for solving a variety of problems of
applied nature in mathematical science and engineering.Many authors have ex-
tended, generalized and improved Banach’s Fixed Point Theorem in different
ways. In [17], Jungck introduced the notion of compatible mappings which are
more general than commuting and weakly commuting mappings. This con-
cept has been useful for obtaining more comprehensive fixed point theorems(see,
e.g.,([3, 4,5, 6,8, 10, 11, 19, 20, 21, 25]). Dhage[7] introduced the concept of
generalized metric or D-metric spaces and claimed that D-metric convergence
defines a Hausdorff topology and that D-metric is sequentially continuous in all
the three variables.Many authors have taken these claims for granted and used
them in proving fixed point theorems in D-metric spaces. Rhoades [17] generalized
Dhage’s contractive condition by increasing the number of factors and proved
the existence of unique fixed point of a self-map in D-metric space. Recently,
motivated by the concept of compatibility for metric space, Singh and Sharma
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[23] introduced the concept of D-compatibility of maps in D-metric space and
proved some fixed point theorems using a contractive condition. Unfortunately,
almost all theorems in D-metric spaces are not valid (see [14, 15, 16]).In this pa-
per, we introduce D*-metric which is a probable modification of the definition of
D-metric introduced by Dhage {7] and prove some basic properties in D*-metric
spaces.

In what follows (X, D*) will denote a D*-metric space, N the set of all natural
numbers, and R¥ the set of all positive real numbers.
Definition 1.1. Let X be a nonempty set. A generalized metric (or D*-metric)
on X is a function: D* : X3 — R that satisfies the following conditions for
each x,y, 2,0 € X.

(1) D*(z,,2) > 0,

(2) D*(z,y,z)=0ifand only if z =y = 2,

(3) D*(z,y,2) = D*(p{z,y, z}),(symmetry) where p is a permutation func-
tion,

(4) D¥(z,y,2) < D*(z,y,a) + D*(a, 2, 2).
The pair (X, D*) is called a generalized metric (or D*-metric) space.

Immediate examples of such a function are the following :
(a) D*(z,y,2) = max{d(z,y),d(y, 2),d(z, z)},
(b) D*(z,y,2) = d(z,y) + d(y, 2) + d(z, z).

Here, d is the ordinary metric on X.
(c) If X =R" then we define
. 1
D*(z,y,2) = (llz — yll” + lly — 2" + [|2 — 2[|")?

for every p € R™.
(d) If X = R* then we define

D*{z,y,z) = {

Remark 1.2. In a D*-metric space, we prove that D*(z,z,y) = D*(z,v,y) -
For

(1) D*(z,z,y) < D*(z,z,z)+ D*(z,y,y) = D*(z,y,y) , and similarly

(ii) D*(y, 9, %) < D*(y, 4, y) + D*(y, , z) = D*(y, 2, 2).
Hence by (i),(ii) we get D*(z, z,y) = D*(z,y,y).

Let {X, D*) be a D*-metric space. For r > 0 define

Bp«(z,r)={y e X : D*(z,y,y) <r}

Example 1.3. Let X = R. Denote D*(z,y,2) = [z —y| + |y — 2| + |z — 2| for
all 2,9,z € R. Thus

Bp(1,2)

0 fr=y=2,
max{z,y, 2} otherwise ,

{yeR:D*(1,y,y) <2}
{yeR:jy-1+y—1| <2}
= {yeR:|ly—1<1}=(0,2)

i

il
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Definition 1.4. Let (X, D*) be a D*-metric space and A C X.
(1) If for every = € A there exist r > 0 such that Bp-(z,7) C A, then subset
A is called open subset of X.

(2) Subset A of X is said to be D*-bounded if there exists r > 0 such that
D*(z,y,y) <rforall z,y € A.

(3) A sequence {z,} in X converges to z if and only if D*(zn,zn,z) =
D*(x,z,2,) — 0 as n — 0o.That is for each € > 0 there exist ng € N such
that

Vn > ng = D*(z,z,zn) < € (*)
This is equivalent with, for each ¢ > 0 there exist ng € N such that
Vn,m > ng => D*(T,Tn, Tm) < € (%)
Indeed, if have (*),then
€

D*(Zn, Tm, ) = D* (20, T, Tm) < D*(Tn, z,2) + D* (T, Tm, Zm) < —;— + 5

=¢£

Conversely, set m = n in (¥x) we have D*(z,, n, ) < €.

(4) Sequence {z,} in X is called a Cauchy sequence if for each € > 0 , there
exits ng € N such that D*(zp, Tn, Tm) < € for each n,m > ng. The D*-metric
space (X, D*) is said to be complete if every Cauchy sequence is convergent.

Let 7 be the set of all A C X with z € A if and only if there exist r > 0 such
that Bp-(z,r) C A. Then 7 is a topology on X (induced by the D*-metric D*).

Lemma 1.5. Let (X, D*) be a D*-metric space. If 7 > 0 , then ball Bp-(z, 1)
with center x € X and radius v is open ball.

Proof. Let z € Bp-(z,r) , hence D*(x,2,2) < r. If set D*(z,2,2) =0 and 7’ =
r—3& then we prove that Bp-(z,7') C Bp-(z,r). Let y € Bp-(z,7’), by triangular
inequality we have D*(x,y,y) = D*(y,v,7) < D*(y,v, 2) +D*(z,z,2) < 1’4+ =
r. Hence Bp-«(z,7’) C Bp~(z,7). That is ball Bp-(x,r) is open ball. O

Definition 1.6. Let (X, D*) be a D*- metric space. D* is said to be continuous
function on X? x (0, co) if

lim D*(zn, Yn, 2n) = D* (2,9, 2).
n—oo
Whenever a sequence {(Zn,¥n, 2n)} in X> X (0, 00) converges to a point
(z,9,2) € X® x (0,00) i.e.
lim z, =z, lim y, =y, lim 2z, =2
n—00 n—o0 n—00

Lemma 1.7. Let (X, D*) be a D*- metric space. Then D* is continuous func-
tion on X3 x (0, 00).

Proof. Since sequence {(Zn, Yn, 2n)} in X3 x (0, 00) converges to a point
(z,y,2) € X3 x (0,00) i.e.

lim z, =z, lim y, =y, lim 2, =2
n—oo n—00 n—oo
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for each € > 0 there exist n; € N such that for every n > ny = D*(x,z,2,) < §
n2 € N such that for every n > ny => D*(y,y,yn) < %, and similarly there
exist nz € N such that for every n > ng = D*(z,2,2,) < 5. If set ng =
max{ni, nz,ng}, then for every n > ng by triangular inequality we have

D* (2, Yny 2n) D*(zn, Yn, 2) + D* (2, Zn, 2n)

D*(2n, 2,y) + D* (Y, Yn, Yn) + D*(2, 20, 20)

D*(z, Y, -77) + D*(J), T, xn) + D*(y, Yn,s yn) + D*(za Zn;y Zn)

€ € €
* =+ =+ = =D"z,y,
< D(:c,y,z)+3+3+3 (z,4,2) +¢€

Hence we have D*(Zy, Yn, 2n) — D*(z,y,2) < €

IN A IA

D*(z,y,2) < D*(2,9,20) + D*(2n,2,2)
< D*($7 Zn, yn) + D*(ymy& y) + D*(zm 2, z)
< D*(ZnyYns Tn) + D* (T, 2, 2) + D* (Yn, ¥, y) + D" (20, 2, 2)
< D*(@n,Yns2n) + % + —;— + % = D*(Zn, Yn, 2n) + €
That is, D*(z,y, 2) — D*(Zn, Yn, 2n) < €. Therefore we have |D*(Zn, Yn, 2n) —
D*(z,y, 2)| < ¢, that is limy, o0 D*(Zn, Yn, 2) = D*(2,y, 2). (]

Lemma 1.8. Let (X, D*) be a D*-metric space. If sequence {z,} in X converges
to x,then z is unique.

Proof. Let ,, — y and y # z. Since {z,} converges to x and y, for each ¢ >0
there exist n; € N such that for every n > n; => D*(z,z,7,) < § andng €N
such that for every n > n2 => D*(y,y,Zs) < §. If set ng = max{ni,ng}, then
for every n > ng by triangular inequality we have

D*(x, z, y) < D*(x,-'t;xn) + D*($n9ya y) < % + % = &.
Hence D*{(z,z,y) = 0 is a contradiction. So, z = y. 0

Lemma 1.9. Let (X,D*) be a D*-metric space. If sequence {zn} in X is
converges to x ,then sequence {z,} is a Cauchy sequence.

Proof. Since x,, ~—— z for each € > 0 there exists
n1 € N such that for every n > ny = D*(2y, Zn,2) < § and nz € N such that
for every m > ng = D*(2, T, Tm) < §. If set ng = max{ni,n2}, then for
every n, m > ng by triangular inequality we have

D*(xn, Tn, Tm) < D*(Tn, Tn, 2)+D* (T, Tm, Tm) < §+§ = €. Hence sequence
{z} is a Cauchy sequence. 0

In 1998, Jungck and Rhoades [10] introduced the following concept of weak
compatibility.

Definition 1.10. Let A and S be mappings from a D*-metric space (X, D*)
into itself. Then the mappings are said to be weak compatible if they commute
at their coincidence point, that is, Az = Sz implies that ASz = SAz.
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Definition 1.11. The pair (A, S) satisfies the property (E.A) [1], if there exists
a sequence {z,} in X such that

lim D*(Azn,u,u) = lim D*(Sz,,u,u)=0

n—oo n—0

for some u € X .
Example 1.12. Let X =R and
D*(z,y,2) = |z —y| + |z — 2| + |y — 2],

for every z,v,z € X. Define A and S by Az = 2z + 1, Sz = z + 2. Define the
sequence {z,} by z, =1+ %, n=1,2,.... We have

lim D*(Azy,3,3) = lim D*(Sz,,,3,3)=0
n—0o0

n—o0

Then, the pair (4, S) satisfies the property (E.A). However, A and S are not
weakly compatible.

The following example shows that there are some pairs of mappings which do
not satisfy the property (E.A).

Example 1.13. Let X =R and
D*(x,y,z):|x—y|+|:c—z|+|y—z|,

for every z,y,z € X . Define A and B by Az =z + 1 and Sz = = + 2. Assume
that there exists a sequence {z,} in X such that

lim D*(Azyn,u,u) = lim D*(Sz,,u,u)=0
n—oo n—0o0
for some u € X. Therefore
lim D*(z, + 1,u,u) = lim D*(z, +2,u,u)=0.
n—oo n—oo
We conclude that z,, — v — 1 and z,, — u — 2 which is a contradiction. Hence,
the pair (A, S) do not satisfy property (E.A).
Recently, Y. Liu et al [12] defined a common property (E.A) as follows.
Definition 1.14. The pairs (4, S) and (B,T) of a D*-metric space (X, D*)

satisfy a common property (E.A) if there exists two sequences {z,} and {y»}
such that for some v € X

lim D*(Az,,u,u) = lim D*(Szn,u,uw) = lim D*(By,,u,u)
n—o0 n—00 n—00

= lim D*(Tyn,u,u) =0. (1.1)

If B=Aand T = S in (1.1), we obtain the definition of property (E.A).
Example 1.15. Let X = [1,00) and
D*(z,y,2) = |z —yl+|z -2l + [y — 2,
for every z,y,z € X . Define A, B, S, T by
z

Az =2
x +3

2
,Bx:2+%,5’a::1+§:c,Tm:1+x.
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1 1
Define sequences {z,} and {yn} by z, =3+ o Yn = 2+ —n= 1,2,...
lim D*(Axy,3,3) = lim D*(By,,3,3)= lim D*(Sz,,3,3)
n—o0 nN—00 n—0o0
= lim D*(Ty,,3,3)=0.
Nn—0o0
Therefore, the pairs (4, S) and (B, T) satisfy a common property (E.A)

2. Main results

Let @ be the set of all increasing and continuous functions ¢ : R, — Ry,
such that ¢(s) < s for every s € (0, 00), $(0) = 0.

Example 2.1. Let ¢: Ry — R defined by ¢(s) = ks for every 0 < k < 1.

Theorem 2.2, Let S and T be self-mappings of a complete D*- metric space
(X, D*) satisfying the following conditions:

D*(Tz,TSy,Sz) Lz,y,2)
Ji pos <ol el)is) (2.1)

0
where

L(z,y, z) = max{D*(z, Sy, z), D*(z, Sy, Tz), D* (Tz,z, z), D*(Tx, Sz, S2)},
forallz,y € X, p: R — R, is a continuous map and ¢ € &. Then S and T
have a unique common fized point in X.

Proof. Let zp € X be an arbitrary point . Then there exist z1,22 € X such
that
Tz = 11 and Sz1 = z9.
Inductively, construct sequence {z,} in X such that
Txon = Toan+1 and S$2n+1 = T2n+2,

forn=20,1,2,---.
Now, we prove that {z,} is a Cauchy sequence. Let dp, = D*(Zym, Zm, Tmet1)-
Replacing zon, T2n—1, Zan+1 by 2,7, 2z respectively in {2.1), then we have

/D’(zzn+1 1 E2n41,%2n42) /D* (Tx2n,TSx2n_1,5C2n11)

p(s)ds (s)ds
0 0

IA

L(ZT2n,Tan—1,T2n+1)
é( /0 0(5)d8)......(2.2),

where

L{zxopn, zon_1,x = max
(@2n; Z2n-1, T2n+1) (D*(Tﬂczn,xzn,x2n),D*(Tﬂv2mSﬂJ2n+1,S$2n+1)

_ D* (295, Tan, Tan41), D* (Ton, Tan, Tan+1),
= I D* *
(T2n+1, Tans T2n), D* (Ton+1, Tant2) Tani2)

D*(zon, Stan—1, Tan+1), D* (T2n, St2n—1, Twzn),>
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Hence we get L(Tan, Tan—1, Tan+1) = max{day, don, dan, dan+1}. Wenow prove
that dopy1 < day, for every n € N. If dap 41 > doy, for some n € N, by inequality
(2.2), we have

dant1 doni1 dont1
[ et <ot [ ptaan < [ to)as

which is a contradiction. Hence dan+1 < dan.
Now, replacing z,y, z by Zon, Tan_1, Tan_1 Tespectively in (2.1), we obtain

/D* (Z2n+1,T2n+1,T2n) /D* (Tz2n,TS22n-1,8T2n-1)

p(s)ds = | w(s)ds

L(z2n,Z2n—1,%2n—1)
¢(/ w(s)ds), .
0

0

IA

where

_ D* (299, STan—1, an—1), D*(T2n, ST2n—1, TT2n),
L(x2n, Ton—1, m2n_1) - max <D* (T$2n, T2on, x2n), D* (TIZna SxQn—ly Sw2n—1)

D*(z2n, Tan, Tan—1)s D* (T2n, Tan, Tant1),
= max { -, ;
D*(Tan+1, T2ns Tan), D*(T2nt1, T2n, Tan)
Hence we get
L(Zon, Tan—1, Tan+1) = max{dan—1, dan, don, d2n}.

We prove that da,, < da,_1, for every n € N. If doy, > don—1 for some n € N, by
inequality (2.2), we have

/Od% p(s)ds < ¢(/0d2n w(s)ds) < /od% (s)ds,

is a contradiction. Hence da,, < da,—1.
Hence for every n € N we have d,, < d,-1. Thus sequence {d,} is lower
bounded and decreasing sequence, hence it is lead to 0. It follows

D* (En’zn yzn+1)

lim p(s)ds = 0.
n—o0 0
Therefore
lim D*(zy, Ty, Tny1) = 0. (2)

n—00
Now, we prove that {xa,} is Cauchy sequence. Suppose that {z2,} is not a
Cauchy sequence in X. Then there is an € > 0 such that for each integer k,
there exist integers 2m(k) and 2n(k) with m(k) > n(k) > k such that
D*(Zan(k), Tam(k) T2m(k)) = € and D* (x2n(k), Tam(k)~15 Tom(k)—1) < €. 3)
From(3) , we have

€ D* (Zan(k)s Tam(k)s Tam(k)) }
D*(@2n(k), T2m(k)—1> T2m(k)—1) + D* (T2m(k) =1, T2am(k)s T2am(k))

€ + dam(k)—1

IANINIA
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Letting k¥ — oo and using (2), we get

limy, D (Tan(k)> Tam(k)s Tam(k)) = € (4)
Similarly,using (2) and (4),we can show that

limy D™ (Zan (k) +1> Tam(k)s Tam(k)) = 1M D" (Tan(k)> Tam(k)— 1> Tam(k)—1) = 6& )
5
Replacing z,y, z by Tam(k), Tan(k)+1; Tam(k) in (2.1), we have

D" (22mik) B2n(k)+1:E2n(k)+1) L(%2m(k) sT2n (k)1 T2m(k))
/ o(s)ds < ¢(/ ©(s)ds),
0 0

where L(T2m(k), Lan(k)+1> L2m(k))
- max( D*(xzm(}c);S$2n(lc}+1,$2m(k)),D*($2m(k),Sx?n(k)—}-lyTwzm(k))a)
D*(Txam(k), Tam(k) Tam(k))> D (TZam(kys ST2m(k)> STam(k))
— max ( D*(Zam(k)s Tan(k)+2 Tam(k))» D* (T2m(k)s T2n(k)+1s Tam(k)+1)s )
D*(Zam(ky+1; Tam(k)s Tamk))s D* (T2m(k)+15 Tam(k)+1> T2m(k)+1)
Making k — oo and using (2),(4) and (5), we obtain

/Oe p(s)ds < ¢( /0‘ w(s)ds) < /0 ) o(s)ds

which is a contradiction. This establishes the fact that {z2,} is a Cauchy se-
quence.

D*(z2n+1; Tama1s Tama1) < D*(Tont1, T2n, Ton) + D* (€20, Tom, Tom)
+D*(Z2m, T2m+1, T2m+1)

Making n,m — oo we get limyp m— oo D* (T2n+1, Z2m+1, Tam+1) = 0. Similarly ,
we get

lim D*(on+1, Tom, Tam) = 0.
n,m—00

Hence {z,} is a Cauchy sequence, and due to the completeness of X, {z,}
converges to some z in X. That is, limy,.,00 Tn = 2. Hence

Hm z9p41 = lim Szg, = lim Zgpyo = lim Trop =«
300 n-—00 n—co n—o0

Now we show that Sz = z. From the inequality (2.1), we get

D*(Tzn T S22n41,51) D*(T2n+1,T2n+2,5T)
/ p(s)ds = / p(s)ds
0 0
L{Z2n,T2n+1,%)
< of p(s)ds),

where
— D (37271, S$2n+17 il?), D*(.’Ezn, Sz2n+1’ szn)’
L(w2n> T2n+1; 32) = max ( ’D* (T-’L'2n, Z2n., x2n)a D*(Tw2m SIB, S.’I?)

= max D* (17321'“ Ton+2s CE), D> (m2m Ton+2y $2n+1), )
D> ($2n+1, Tan, wZn)v D*(wzn—)-h SQ’)‘, Sw)
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On making n — oo , we get

D*(z,z,Sz) D*(z,z,Sz) D*(z,z,Sz)
/0 ple)ds < o( [ o(s)ds) < [ o(5)ds,
0 0

which is a contradiction.Therefore, it follows that Sz = z. Next we prove that
Tz = z. For this, replacing x,y, z by Zan, T,z in inequality (2.1), we have

D*(Tz2,,TSz,Sx) D*(Tzon,Tx,x)
/ oot = | ols)ds
0 0
L(zon,z,z)
< o o(s)ds),
where
_ D*(m2n’va'r)’D*(xQn,SmaTan),
Lezn, 2, 2) = max( D*(Tzan, Tan, Ton), D*(T22n, Sz, S2)
— max D* (x2n7xax)’D*(w2n’xax2n+l)) >
D* (%2041, Tan, Tan), D* (T2nt1, T, T)

Asn — oo, we have

D*(z,Tz,x) D*(z,z,Tx) D*(z,z,Tx)
/ (o) < o( [ pls)ds) < | p(s)ds,
0

which is a contradiction. So it follows that Tx = z. Hence ,Tz = Sz = z, that

is, = is a common fixed of T, S . The uniqueness of = follows from the inequality
(2.1). O

Theorem 2.3. Let (X, D*) be a D*-metric space, and A, B,C,R,S and T be
self-mappings of X satisfying the following conditions:

A(X) C T(X) and B(X) C R(X) and C(X) C S(X)

D*(Az,By,C=z) L(z,y,2)
/0 p(s)ds < ¢(/0 o(s)ds), (2.3)

where L(x,y,z) = max{D*(Sz, Ty, Rz), D*(Az, Ty, Rz), D*(Sx, By, Rz), D*(
Sz, Ty, Cz)}, for all z,y,z € X, ¢ : R — Ry is a continuous mapping and
¢ € ®. Suppose that two of the pairs (A,S), (C,R) and (B,T) satisfy the com-
mon property (E.A); pairs (A, S) , (C, R) and (B, T) are weakly compatible, and
one of R(X),T(X) and S(X) is a closed subset of X. Then A,B,C,R,S and
T have a unique common fized point in X.

Proof. Suppose that (A4, S) and (B, T) satisfy a common property (E.A). Then,
there exists two sequences {z,} and {y,} in X such that for some v € X .

lim D*(Azn,u,u) = lm D*(Szp,u,u)

n—oo n—co

= lim D*(Byn,u,u) = lim D*(Tyn,u,u)=0.
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As B(X) C R(X), there exists a sequence {z,} in X such that By, = Rz,.
Thus lim,_,c R2n = u. Now we prove that lim, o Cz, = u. Replacing
Zn, Yn, 2n DY Z, ¥, 2 respectively in (2.3) ,we obtain

D*(AznyByn)Czn) L(m’n’y’ﬂ»zn) )
/ ols)ds < o( [ p(5)ds),

where
_ D*(Szrn,Tyn, Rzn), D*(Azy, Tyn, R2y),
L(wmyn’zn) - max{ D*(anaBymRzn);D*(anaTyn: Czn) ’

Hence lim,—o00 L{zy, Yn, 2n) = max {0, 0,0, D*(u, u, lim, 00 Czn)}. On making
n — oo in above inequality , we get

) D*(u,u,limy, 00 Czn) D*(u,u,limp— 00 C2p)
/ olo)ds < o[ p(s)ds)
0

<

D* (u,u,limp 00 C2n)
/ p(s)ds,

o]

which is a contradiction. Hence lim,,_,o Czn = u. Assume that S(X) is a closed
subset of X. Then, there exists v € X such that Sv = u.
If u # Av, then using (2.3) we obtain

/D*(Av,BymCZn)

. L‘('Usyn 9zn)‘
o(8)ds < 6 / o(s)ds),
0 1]

where L(v,Yn, 2,) = max {D* (Sv, Tyn, Rzyn), D*(Av, Tyn, Rzy), D*(Sv, Byn,
Rz,), D*(Sv, Tyn, Czn)}. As n — o0, it follows that

D*(Av,u,u) D*(Av,u,u) D*{Av,u,u)
[ pls)ds < o [ olo)ds) < [ pls)ds,
0

which is a contradiction. Therefore, Av = Sv = u. Since A(X) C T(X), there
exists w € X such that Av = Tw = u. If u # Bw, using (2.3) we obtain

L(v,w,zn)

o(s)ds < & /0 w(s)ds),

where L(v,w, 2,) = max{D*(Sv, Tw, Rzy), D*(Av, Tw, Rz,), D*(Sv, Bw, Rzy),
D*{(Sv,Tw, Czn}}. As n — 00, it follows that

D*(u,Bw,u) D*(u,Bw,u) D*(u,Bw,u)
/ o(s)ds < (| o(s)ds) < | o(5)ds,

/D* (Av,Bw,Czy)

0
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which is a contradiction. Therefore, Bw = u. Since B(X) C R(X), there exists
e € X such that Re = Bw = u. If e # Re, using (2.3) we obtain

D*(Av,Bw,Ce) L{v,w,e)
/0 o(s)ds < / o(s)ds),

0
where L(v,w,e) = max{D*(Sv, Tw, Re), D*(Av, Tw, Re), D*(Sv, Bw, Re), D*
(Sv,Tw, Ce)}. Thus by the last inequality, we get

D* (u,u,Ce) D*(u,u,Ce) D*(u,u,Ce)
/0 plo)ds < o [ o(5)ds) < /0 o(5)ds,
0

which is a contradiction. Hence Ce = u.That is,
Av=Sv=Bw =Tw = Re =Ce = u.

By weak compatibility of the pairs {4, S) , (B,T) and (R, C) , we get Au = Su
, Bu=Tu and Ru = Cu. If u # Au , then using (2.3),we have

D*( Au,Bw,Ce) L(u,w,e)
/0 o(s)ds < o ]0 #(s)ds),

where

L(u,w,e) = max{D*(Su,Tw, Re), D*(Au,Tw, Re), D*(Su, Bw, Re),
D*(Su,Tw,Ce)}
= D*(Au,u,u),
it follows that

D* (Aw,u,u) D* (Au,u,u) D* (Au,u,u)
/ pls)ds < o [ p(o)is) < | pls)ds,
0 .

which is a contradiction. Hence Au = Su = wu. Similarly, we can prove that
Bu =Tu =vand Ry = Cu = u. Thus uis a common fixed point of A, B,C, R, S
and T'. The uniqueness of u follows from inequality (2.2). O
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