DOI QR코드

DOI QR Code

The effect of silane treatment timing and saliva contamination on shear bond strength of resin cement to porcelain

Silane의 처리시기와 타액오염이 도재-레진 시멘트의 전단 결합강도에 미치는 영향

  • Ro, Young-Seon (Dentistry, Department of Medical Science, Graduated School, Korea University) ;
  • Ryu, Jae-Jun (Department of Medical Science, Graduated School, Korea University) ;
  • Suh, Kyu-Won (Department of Medical Science, Graduated School, Korea University)
  • 노영선 (고려대학교 대학원 치과학교실) ;
  • 류재준 (고려대학교 임상치의학연구소) ;
  • 서규원 (고려대학교 임상치의학연구소)
  • Published : 2009.01.30

Abstract

Statement of problem: Porcelain veneers have become a popular treatment modality for aesthetic anterior prosthesis. Fitting porcelain veneers in the mouth usually involve a try-in appointment, which frequently results in salivary contamination of fitting surfaces. Purpose: An in vitro study was carried out to investigate the effect of silane treatment timing and saliva contamination on the resin bond strength to porcelain veneer surface. Material and methods: Cylindrical test specimens (n=360) and rectangular test specimens (n=5) were prepared for shear bond test and contact angle analysis. Whole cylindrical specimens divided into 20 groups, each of which received a different surface treatment and/or storage condition. The composite resin cement stubs were light-polymerized onto porcelain adherends. The shear bond strengths of cemented stubs were measured after dry storage and thermocycling (3,000 cycles) between 5 and $55^{\circ}C$. The silane and their reactions were chemically monitored by using Fourier Transform Infrared Spectroscopy analysis (FTIR) and contact angle analysis. One-way analysis of variance (ANOVA) and Dunnett's multiple comparison were used to analyze the data. Results: FT-IR analysis showed that salivary contamination and silane treatment timing did not affect the surface interactions of silane. Observed water contact angles were lower on the saliva contaminated porcelain surface and the addition of 37% phosphoric acid for 20 seconds on saliva contaminated porcelain increased the degree of contact angle. Silane applied to the porcelain, a few days before cementation, resulted in increasing the bond strength after thermocycling. Conclusion: Within the limitation of this study, it can be concluded that it would be better to protect porcelain prosthesis before saliva contamination with silane treatment and to clean the contaminated surface by use of phosphoric acid.

서론: 인접 자연치와 아름답고 자연스런 조화를 이루는 심미적 치료를 위해 도재 수복물은 대중적인 치료방법의 하나로 잡고 있다. 임상에서 도재 수복물이 제작 후 치아에 시멘트로 접착을 하기 전 먼저 구강 내에서 시적할 때 수복물 표면에 타액, 혈액, 시적용 시멘트 등으로 인해 오염될 수 있다. 연구 목적: 이 연구의 목적은 도재 수복물로 사용되고 있는 라미네이트 도재에 실란 결합제의 처리 시기를 달리할 때와 도재 수복물을 치아에 시적 할 때 타액의 오염여부가 실란 결합제의 물리적, 화학적 반응성에 미치는 영향을 관찰하여 도재와 레진 시멘트 사이의 결합력의 안정성을 평가하는 것이다. 연구 재료 및 방법: 라미네이트용 도재를 360개의 원반모형과 5개의 정사각형 모형으로 제작하여 20군으로 나눈다. 각 군에 표면처리를 달리 한 뒤 푸리에 적외선 분광계, 접촉각 측정기와 인스트론 만능 시험기를 이용해 화학적, 물리적 비교를 하였다. 통계는 각 군의 전단 결합 강도의 유의성을 검증하기 위하여 일원분산분석(ANOVA) 후 사후검정은 던넷 다중비교 (Dunnett's multiple comparison)를 시행하였다 (P > .05). 연구 결과: 푸리에 적외선 분광 자료에 의해 본 타액 오염 및 실란의 처리 시기에 따른 화학적 변화는 크지 않았다. 접촉각은 타액 오염 후 낮아졌으나 인산으로 산 부식 후 각도가 증가하였다. 전단 결합강도값은 열 순환후의 군에서 미리 실란으로 보호한 경우에 유의한 차이가 있었다. 결론: 수복물의 내구성에 영향을 미치는 다양한 구강환경과 유사한 조건에서 수복물의 물성평가를 같이 고려해 볼 때 실란 결합제를 이용한 수복물의 접착시 실란 결합제를 수복물에 미리 도포하여 일정시간의 경과 후 수복물을 접착하며, 타액 오염이 발생할 경우 인산으로 수복물을 세척하는 것이 유용한 방법 임을 알 수 있었다

Keywords

References

  1. Groten M, Probster L. The influence of different cementation modes on the fracture resistance of feldspathic ceramic crowns. Int J Prosthodont 1997;10:169-77
  2. Pisani-Proenca J, Erhardt MC, Valandro LF, Gutierrez-Aceves G, Bolanos-Carmona MV, Del Castillo-Salmeron R, Bottino MA. Influence of ceramic surface conditioning and resin cements on microtensile bond strength to a glass ceramic. J Prosthet Dent 2006;96:412-7 https://doi.org/10.1016/j.prosdent.2006.09.023
  3. Koenig JL, Emadipour H. Mechanical characterization of the interfacial strength of glass-reinforced composites. Polymer Composites 1985;6:142-50 https://doi.org/10.1002/pc.750060303
  4. Hayakawa T, Horie K, Aida M, Kanaya H, Kobayashi T, Murata Y. The influence of surface conditions and silane agents on the bond of resin to dental porcelain. Dent Mater 1992;8:238-40 https://doi.org/10.1016/0109-5641(92)90092-Q
  5. Della Bona A, Anusavice KJ, Mecholsky JJ Jr. Failure analysis of resin composite bonded to ceramic. Dent Mater 2003;19:693-9 https://doi.org/10.1016/S0109-5641(03)00015-0
  6. Nicholls JI. Tensile bond of resin cements to porcelain veneers. J Prosthet Dent 1988;60:443-7 https://doi.org/10.1016/0022-3913(88)90245-4
  7. Quaas AC, Yang B, Kern M. Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent Mater 2007;23:506-12 https://doi.org/10.1016/j.dental.2006.03.008
  8. Silverstone LM, Hicks MJ, Featherstone MJ. Oral fluid contamination of etched enamel surfaces: an SEM study. J Am Dent Assoc 1985;110:329-32 https://doi.org/10.14219/jada.archive.1985.0350
  9. Aboush YE. Removing saliva contamination from porcelain veneers before bonding. J Prosthet Dent 1998;80:649-53 https://doi.org/10.1016/S0022-3913(98)70050-2
  10. Matinlinna JP, Lassila LV, Vallittu PK. Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. J Dent 2006;34:721-6 https://doi.org/10.1016/j.jdent.2006.01.005
  11. Anagnostopoulos T, Eliades G, Palaghias G. Composition, reactivity and surface interactions of three dental silane primers. Dent Mater 1993;9:182-90 https://doi.org/10.1016/0109-5641(93)90118-A
  12. Hooshmand T, van Noort R, Keshvad A. Storage effect of a pre-activated silane on the resin to ceramic bond. Dent Mater 2004;20:635-42 https://doi.org/10.1016/j.dental.2003.08.005
  13. Kato H, Matsumura H, Tanaka T, Atsuta M. Bond strength and durability of porcelain bonding systems. J Prosthet Dent 1996;75:163-8 https://doi.org/10.1016/S0022-3913(96)90094-3
  14. Nakamura S, Yoshida K, Kamada K, Atsuta M. Bonding between resin luting cement and glass infiltrated aluminareinforced ceramics with silane coupling agent. J Oral Rehabil 2004;31:785-9 https://doi.org/10.1111/j.1365-2842.2004.01304.x
  15. Kerr C, Walker P. Some aspects of silane technology of surface coatings and adhesives. In:Allen KA, editor. Adhesion 12, London: Elsevier Applied Science Publishers 1987;17-38
  16. Plueddeman EP. Catalytic effects in bonding thermosetting resins to silane treated fillers. In: Deanin R.D, Shott N.R, Editors. Fillers and reinforcements for plastics. Advances in Chemistry Series 134, Washington DC: Am Chem Soc 1974;86-94
  17. Ishida H. Structural gradient in the silane coupling agent layers and its influence on the mechanical and physical properties of composites. In:Ishida H, Kumar G, editors. Molecular characterization of composite interface. New York; Plenum Press 1985. pp. 25-50
  18. Ishida H, Koenig JL. A Fourier-transform infrared spectroscopic study of the hydrolytic stability of silane coupling agents on E-glass fibers. J Polymer Sci: Polymer Physics 1980;18:1931-43 https://doi.org/10.1002/pol.1980.180180906
  19. Calamia JR. Etched porcelain veneers: the current state of the art. Quintessence Int 1985;16:5-12
  20. Swift B, Walls AW, McCabe JF. Porcelain veneers: the effects of contaminants and cleaning regimens on the bond strength of porcelain to composite. Br Dent J 1953;179:203-8 https://doi.org/10.1038/sj.bdj.4808872