DOI QR코드

DOI QR Code

Form, Function and Longevity in Fucoid Thalli: Chlorophyll a Fluorescence Differentiation of Ascophyllum nodosum, Fucus vesiculosus and F. distichus (Phaeophyceae)

  • Published : 2009.06.01

Abstract

Imaging-PAM fluorometry was used to assess the chlorophyll a fluorescence parameter ${\Phi}_{PSII}$ (effective quantum yield) in Frcus vesiculosus. F. disttchus. ssp. distichus and AscophyIIum nodosum. The objective was to show variadon in fluorescence yield associated with age and frond organ, and to illustrate the spatial scales at which photosynthetic parameters vary on fucoid thalli. In addition, our species represented taxa in different but related genera, species with different ecoloeies (rock pool and non rock pool species), morphologies (with and without air bladders) and longevities (several to 20 or more years). A further objective was to determine the extent to which photosynthetic parameters reflected these differences- Effective quantum yield declined substantially with age in F. vesiculosus and F. distichus ssp. distichus, whereas ${\Phi}_{PSII}$ in A. nodosum was maximal after three years. In A. nodosum ${\Phi}_{PSII}$ was still high in branch segments at least seven years old. Older branches of A. nodosum showed relatively higher and more homogeneous photosynthetic capacity relative to Fucus species. Surfaces of air bladders in A. nodosum and F. vesicu- losus had ${\Phi}_{PSII}$ that was not significantly different from the highest rates, achieved in these species. The heterogene- ity of photosynthetic efficiency is consistent with morphological and developmental differences among the species and their ecology. in particular the longevity of A. nodosum fronds.

Keywords

References

  1. Aberg P. 1992. A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73:1473-1487. https://doi.org/10.2307/1940691
  2. Adey W.H. and Hayek L.-A.C. 2005. The biogeographic structure of the western North Atlantic rocky intertidal. Crypt. Algol. 26:35-66.
  3. Anderson J.M., Park Y.-I. and Chow W.S. 1997. Photoinactivation and photoprotection of photosyntem Ⅱin nature. Physiologia Plantarum 100:214-233. https://doi.org/10.1111/j.1399-3054.1997.tb04777.x
  4. Ang P.O. 1991. Age- and size-dependent growth and mortalityin a population of Fucus distichus. Mar. Ecol. Prog. Ser. 59:171-181. https://doi.org/10.3354/meps059171
  5. Baardseth E. 1970. Synopsis of biological data on knobbed wrack Ascophyllum nodosum (Linnaeus) Le Jolis. FAO Fisheries Sympsis 38:1-40.
  6. Bold H.C. and Wynne M.J. 1985. Introduction to the aIgae, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 720 pp.
  7. Brackenbury A.M., Kang E.J. and Garbary, D.J. 2006. Air pressure regulation in air bladders of Ascophyllum nodosum(Fucales, Phaeophyceae). AIgae 21:245-251.
  8. Brawley S.H., Johnson L.E., Pearson G.A, Speransky V., Li R.and Serrao E. 1999. Gamete release at low tide in fucoid algae: maladaptive or advantageous? Amer. Zool. 39: 218-229.
  9. Chapman A.R.O. 1995. Functional ecology of fucoid algae:twenty-three years of progress. Phycologia 34:1-32. https://doi.org/10.2216/i0031-8884-34-1-1.1
  10. Clay K. 1988, Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10-16. https://doi.org/10.2307/1943155
  11. Clay K. 1990. Fungal endophytes of grasses. Ann. Rev. Ecol. Syst. 21:275-297. https://doi.org/10.1146/annurev.es.21.110190.001423
  12. Cousens R. 1982. The effect of exposure to wave action on the morphology and pigmentation of Ascophyllum nodosum insoutheastern Nova Scotia. Bot. Mar. 25:191-195. https://doi.org/10.1515/botm.1982.25.4.191
  13. David H.M. 1943. Studies in the autecology of Ascophyllum nodosum Le Jol. J. Ecol. 31:178-198. https://doi.org/10.2307/2256547
  14. Deckert R.J. and Garbary D.J. 2005. Ascophyllum and its symbionts. VI. Microscopic characterization of the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) symbiotum. Algae 20:225-232. https://doi.org/10.4490/ALGAE.2005.20.3.225
  15. Dring M.J. and Brown F.A. 1982. Photosynthesis of intertidalbrown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar. Ecol. Prog. Ser. 8:301-308. https://doi.org/10.3354/meps008301
  16. Dromgoole F.I. 1990. Gas-filled structures, buoyancy and support in marine macro-algae. Prog. Phycol. Res. 7:169-211.
  17. Dudgeon S. and Petraitis P.S. 2005. First year demography ofthe foundation species, Ascophyllum nodosum. and its com-munity implications. Oikos 109:405-415. https://doi.org/10.1111/j.0030-1299.2005.13782.x
  18. Floc'h J.Y. and Penot M. 1972. Transport du $^{32}P$ et du $^{86}Rb$ chezquelques algues brunes: orientadon des migrations et voies de conduction. Physiol. Veg. 10:677-686.
  19. Fritsch F.E. 1945. The Structure and reproduction of the algae. Vol.II. Cambridge University Press, Cambridge, 791 pp.
  20. Garbary D.J. 2007. The margin of the sea: survival at the top ofthe tides. In: Seckbach J. (ed.), Algae and Cyanobacteria in extreme environments.Springer-Verlag, Berlin. pp. 173-191.
  21. Garbary D.J., Brackenbury A., McLean A.M. and Morrison D.2006. Structure and development of air bladders in Fucus and Ascophyllum. Phycologia 45:557-566. https://doi.org/10.2216/05-62.1
  22. Garbary D.)., Burke, J. and Tian L. 1991. The Ascophyllum / Polysiphonia / Mycosphaerella symbiosis. II. Aspects of the ecology and distribution of Polysiphonia lanosa in Nova Scotia. Bot. Mar. 34: 391-401. https://doi.org/10.1515/botm.1991.34.5.391
  23. Garbary D.J. and Clarke B. 2001. Apoptosis during trichoblast development in Polysiponia harveyi (Rhodophyta). Phycologia 40: 324-329. https://doi.org/10.2216/i0031-8884-40-4-324.1
  24. Garbary D.J. and Deckert R.J. 2001. Three part harmony - Ascophyllum and its symbionts. In: Seckbach J. (ed.),Symbiosis. mechanisms and model systems. Kluwer Academic Publishers, The Netherlands. pp. 309-321.
  25. Garbary DJ. and Kim K.Y. 2005. Anatomical differentiation and photosynthetic adaptation in brown algae. Algae 20: 233-238. https://doi.org/10.4490/ALGAE.2005.20.3.233
  26. Garbary D.J. and London J.F. 1995. The Ascophyllum /Polysiphonia / Mycosphaerella symbiosis. V. Fungal infection protects A. nodosum from desiccation. Bot. Mar. 38: 529-533. https://doi.org/10.1515/botm.1995.38.1-6.529
  27. Garbary D. J. and MacDonald K.A. 1995. The Ascophyllum / Polysiphonia / Mycosphaerella symbiosis. IV. Mutualism in the Ascopftyttiim / Mycosphaerella interaction. Bot. Mar. 38:221-225. https://doi.org/10.1515/botm.1995.38.1-6.221
  28. Gylle A.M., Nygard C.A. and Ekelund N.G.A. 2009. Desiccationand salinity effects on marine and brackish Fucus vesiculosus L. (Phaeophyceae). Phycologia 48:156-164. https://doi.org/10.2216/08-45.1
  29. Heaven C.S. and Scrosati R. 2008. Benthic community composition across gradients of intertidal elevation, wave exposure,and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 369:13-23. https://doi.org/10.3354/meps07655
  30. Hill R., Schreiber U., Gademann R., Larkum A.W.D., $K\ddot{u}hl$ M.and Ralph P.J. 2004. Spatial heterogeneity of photosynthesis and effect of temperature-induced bleaching conditions in three species of corals. Mar. Biol. 144:633-640. https://doi.org/10.1007/s00227-003-1226-1
  31. Honeywill C., Paterson D.M. and Hagerthey S.E. 2002. Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur. J.Phycol. 37: 485-492. https://doi.org/10.1017/S0967026202003888
  32. Huppertz K., Hanelt D. and Nultsch W. 1990. Photoinhibition of photosynthesis in the marine macroalga Fucus serratus as studied by field experiments. Mar. Ecol. Prog. Ser. 66: 175-182. https://doi.org/10.3354/meps066175
  33. Hurka H. 1971. Factors influencing the gas composition in the vesicles of Sargassum. Mar. Biol. 11:82-89. https://doi.org/10.1007/BF00348024
  34. Johnson A.M. and Raven J.A. 1986. The analysis of photosynthesis in air and water of Ascophyllum nodosum (L.) Le Jol.Oecologia 69:288-295. https://doi.org/10.1007/BF00377636
  35. Johnson S.C. and Scheibling R.E. 1987. Structure and dynamics of epifaunal assemblages of intertidal rock weeds(Ascophyllum nodosum and Fucus vesiculosus) in NovaScotia, Canada. Mar. Ecol. Prog. Ser. 37:209-227. https://doi.org/10.3354/meps037209
  36. Keser M., Vadas R.L. and Larson B.R. 1981. Regrowth ofAscophyllum nodosum and Fucus vesiculosus under various harvesting regimes in Maine, U.S.A. Bot. Mar. 24:29-38. https://doi.org/10.1515/botm.1981.24.1.29
  37. Khailov K.M., Kholodov V.I., Firsov Y.K. and Prazukin A.V.1978. Thalli of Fucus vesiculosus in ontogenesis: changes in morpho-physiological parameters. Bot. Mar. 21: 289-311. https://doi.org/10.1515/botm.1978.21.5.289
  38. Kiirikki M. and Ruuskanen A. 1996. How does Fucus vesiculosus survive ice scraping? Bot. Mar. 39:133-139. https://doi.org/10.1515/botm.1996.39.1-6.133
  39. Kilar J.A, Littler M.M. and Littler D.S. 1989. Functional-mor-phological relationships in Sargassum polyceratium(Phaeophyta): phenotypic and ontogenetic variability in apparent photosynthesis and dark respiration. J. Phycol. 25:713-720. https://doi.org/10.1111/j.0022-3646.1989.00713.x
  40. Kim K.Y. and Garbary D.J. 2006. Fluorescence responses of photosynthesis to extremes of hyposalinity, freezing and desiccation in the intertidal crust Hildenbrandia rubra(Hildenbrandiales, Rhodophyta). Phycologia 45: 680-686. https://doi.org/10.2216/05-43.1
  41. Kim K.Y, Jeong H.J., Main H.P. and Garbary D.J. 2006. Fluorescence and photosynthetic competency in single eggs and embryos of Ascophyllum nodosum (Phaeophyceae). Phycologia 45:331-336 https://doi.org/10.2216/05-40.1
  42. King R.J. and Schramm W. 1976. Determination of photosynthetic rates for the marine algae Fucus vesiculosus and Laminaria digitata. Mar. Biol. 37:209-213. https://doi.org/10.1007/BF00387605
  43. Knight M. and Parke M. 1950. A biological study of Fucus vesiculosus L. and F. serratus L.J. Mar. Biol. Ass. U.K. 29:439-514. https://doi.org/10.1017/S0025315400055454
  44. Kohlmeyer J. and Volkmann-Kohlmeyer B. 1998. Mycophycias, a new genus for the mycobionts of Apophlaea, Ascophyllumand Pelvetia. Systema Ascomycetum 16:1-7.
  45. Kremer B.P. 1975. Physiologisch-chemische Charakteristik ver-schiedener Thallusbereiche von Fucus serratus. Helgolander Wis. Meeresunters. 32:403-424. https://doi.org/10.1007/BF02277985
  46. Lazo L., Markham I.H. and Chapman A.R.O. 1994. Herbivoryand harvesting: effects on sexuat recruitment and vegetative modules of Ascophyllum nodosum. Ophelia 40:95-113.
  47. Lobban C.S. and Harrison P. J. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, 386 pp.
  48. Madsen T.V. and Maberly S.C. 1990. A comparison of air andwater as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J. Phycol. 26:24-30. https://doi.org/10.1111/j.0022-3646.1990.00024.x
  49. Malm T. and Kautsky L. 2004. Are bladderwrack (Fucus vesiculosus L.) holdfasts that support several fronds composed on one or several genetic individuals. Aquat. Bot. 80:221-226. https://doi.org/10.1016/j.aquabot.2004.10.001
  50. McCook L.J. and Chapman A.R.O. 1992. Vegetative regeneration of Fucus rockweed canopy as a mcchanism of secondary succession on an exposed rocky shore. Bot. Mnr. 35:35-46. https://doi.org/10.1515/botm.1992.35.1.35
  51. McLachlan J. and Bidwell R.G.S. 1983. Effects of colored lighton the growth and metabolism of Fucus embryos andapices in culture. Can. J. Bot. 61:1993-2003. https://doi.org/10.1139/b83-215
  52. McLachlan J. and Chen L.C.-M. 1972. Formation of adventive embryos from rhizoidal filaments in sporelings of four species of Fucrs (Phaeophyceae). Can. J. Bot. 50:1841-1844. https://doi.org/10.1139/b72-231
  53. Niemeck R.A. and Mathieson A.C. 1978. Physiological studiesof intertidal fucoid algae. Bot. Mar. 21:221-227. https://doi.org/10.1515/botm.1978.21.4.221
  54. Novaczek I. and McLachlan J. 1989. Investigations of the marinealgae of Nova Scoda XVII: vertical and geographic distribution of marine algae on rocky shores of the Maritime Provinces. Proc. Nova Scotian Inst. Sci. 38:91-143.
  55. Nygard C.A. and Ekelund N.G.A. 2006. Photosynthesis and UV-B tolerance of the marine alga Fucus vesiculosus at different sea water salinities. J. Appl. Phycol. 18:461-467. https://doi.org/10.1007/s10811-006-9050-x
  56. Omasa K., Shimazaki K.I., Aiga I., Lasrcher W. and Onoe M. 1987. Image analysis of chlorophyll fluorescence transientsfor diagnosing the photosynthetic system of attachedleaves. Plant Physiol. 84:748-752. https://doi.org/10.1104/pp.84.3.748
  57. Pearson G.A. and Brawley SH. 1996. Reproductive ecology of Fucus distichus Phaeophyceae: an intertidal alga with successful external fertilization. Mar. EcoI. Prog. Ser. 143: 211-223. https://doi.org/10.3354/meps143211
  58. Penot M. and Penot M. 1977. Quelques aspects originaux destransports a longue distance dans le thalle de Ascophyllum nadasum (L.) Le Jolis (Phaeophyceae, Fucales). Phycologia16:339-347. https://doi.org/10.2216/i0031-8884-16-3-339.1
  59. Quadir A., Harrison P.J. and Dewreede R.E. 1979. The effects of emergence and submergence on photosynthesis and respiration of marine macrophytes. Phycologia 18:83-88. https://doi.org/10.2216/i0031-8884-18-1-83.1
  60. Ralph P.J., Macinnis C.M.0. and Frankart C. 2005. Fluorescence imaging application: effect of leaf age on seagrass photokinetics. Aquat. Bot. 81:69-84. https://doi.org/10.1016/j.aquabot.2004.11.003
  61. Raven J.A. 1996. Into the voids: the distribution, function, development and maintenance of gas spaccs in plants. Ann. Bot. 78:137-142. https://doi.org/10.1006/anbo.1996.0105
  62. Raven J.A, and Samuelsson G. 1988. Ecophysiology of Fucus vesiculosus L. close to its northern limit in the Gulf of Bothnia. Bot. Mar. 31:399-410. https://doi.org/10.1515/botm.1988.31.5.399
  63. Schiel D.R. and Foster M.S. 2006. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Ann. Rev. Ecol. Evol. Syst. 37:343-372. https://doi.org/10.1146/annurev.ecolsys.37.091305.110251
  64. Serrao E.A., Alice L.A. and Brawley S.H. 1999. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J. Phycol 35: 382-394. https://doi.org/10.1046/j.1529-8817.1999.3520382.x
  65. Serrao E.A., Pearson G., Kautsky L. and Brawley S.H. 1996. Successful external fertilization in turbulent environments. Proc. Natl. Acad. Sci. U.S.A. 93:5286-5290. https://doi.org/10.1073/pnas.93.11.5286
  66. Stengel D.B. and Dring M.J. 1998. Seasonal variation in the pigment content and photosynthesis of different thallusregions of Ascophyllum nodosum (Fucales, Phaeophyta) inrelation to position in the canopy. Phycologia 37:259-268. https://doi.org/10.2216/i0031-8884-37-4-259.1
  67. Stromgren T. 1977. Apical length growth of five intertidal species of Fucales in relation to irradiance. Sarsia 63:39-47.
  68. Sundene O. 1973. Growth and reproduction in Ascophyhllum nodosum (Phaeophyceae). Norw. J. Bot. 20:249-255.
  69. Tammes P.M.L. 1954. Gas-exchange in the vesicles (air bladders) of Ascophyllum nodosum. Acta Bot. Neerl. 3:114-123. https://doi.org/10.1111/j.1438-8677.1954.tb00291.x
  70. Tarakhovskaya E.R. and Maslov Y.I. 2005. Description of the photosynthetic apparatus of Fucus vesiculosus L. in early embryogenesis. Biol. Bull. 32(5): 456-460 (Translated from Izvestiya Akad Nauk, Seriya Biologicheskaya, No. 5: 552-557). https://doi.org/10.1007/s10525-005-0124-0
  71. Taylor W.R. 1957. Marine algae of the northeastern coast of NorthAmerica. $2^{nd}$ ed. University of Michigan Press, Ann Arbor, MI. 520 pp.
  72. Vadas R.L., Wright W.A. and Miller S.L. 1990. Recruitment of Ascophyllum nodosum: wave action as a source of mortality.Mar. Ecol. Prog. Ser. 61: 263-272. https://doi.org/10.3354/meps061263
  73. van Kooten O. and Snel J.F.H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. PhotosynRes. 25:147-150.

Cited by

  1. Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.321
  2. Effect of GeO2on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae) vol.27, pp.2, 2012, https://doi.org/10.4490/algae.2012.27.2.125
  3. Physiological ecology of photosynthesis inPrasiola stipitata(Trebouxiophyceae) from the Bay of Fundy, Canada vol.61, pp.3, 2013, https://doi.org/10.1111/pre.12017
  4. Development of oogonia ofSargassum horneri(Fucales, Heterokontophyta) and concomitant variations in PSII photosynthetic activities vol.53, pp.1, 2014, https://doi.org/10.2216/13-161.1
  5. from Shantou, China: a photosynthetic perspective vol.57, pp.4, 2018, https://doi.org/10.2216/17-93R3