DOI QR코드

DOI QR Code

Analysis of Determinants and Moderator Effects of User Age and Experience for VoIP Acceptance

인터넷전화 수용 결정요인과 사용자 연령 및 경험 변수의 조절효과 분석

  • Published : 2009.12.31

Abstract

The purpose of this study is to define determinants of VoIP user acceptance and to verify significant causality among latent variables - performance expectancy, effort expectancy, cost expectancy, social influence, facilitating conditions, behavioral intend, use behavior - based on UTAUT model. We presented the expanded hypotheses including the new factor, cost expectancy and analyzed the moderating effect of user age, gender and usage experience variables. For a accuracy of predicted results, we focused on survey analysis with 641 real user samples. Compared to previous studies, it is meaningful that this research verified the conceptual difference between behavioral intention and usage behavior. As a result, all proposed hypotheses accepted and moderating effects are supported significantly in age and use experience moderating variables.

본 연구의 목적은 첫째, 인터넷전화(Voice over Internet Protocol)의 사용자 수용에 미치는 결정요인을 정의하고, 둘째, 수용 이론들의 통합모형인 UTAUT를 기저모형으로 하여, 성과기대감, 사회적 영향, 노력기대감, 사용촉진조건, 행위의도와 사용행위 등의 잠재변수 간의 복합적인 인과관계를 검증하는 것이다. 셋째, 비용기대감 변수를 새롭게 정의하여 연구가설에 포함하였고, 각 변수들 간의 경로에 영향을 주는 조절변수로서 사용자 연령, 성별, 경험기간의 조절효과를 분석하였다. 또한, VoIP의 실제 사용자 641명을 표본 조사함으로써, 행위의도와 사용행위 변수 간의 개념적 차이를 명확히 구분하여 보다 정확한 분석 결과의 향상을 도모하였다. 사용자 수용에 대한 기존 연구들은 사용행위 변수를 검증할 때, 실제 사용자뿐만 아니라 긍정적인 행위의도를 가진 미래의 잠재적 사용자를 포함시키는 사례가 많았다. 분석 결과, 제시한 모든 연구가설이 채택되었으며, 조절효과에서 연령이 성과기대감, 사회적 영향과 행동의도 간에, 경험기간은 사용촉진조건, 행위의도와 사용행위 간에 정의 관계가 성립하였다.

Keywords

References

  1. 장길수, “인터넷전화의 기술 및 산업 동향”, 전자부품연구원, 2005
  2. 이주영, “해외의 모바일 VoIP 서비스 제공 현황”, 정보통신정책연구원, pp.56-64, 2009
  3. Atlas Research and Consulting, “VoIP Phone: Recent Trends Analysis and Forecast Focused on Market, Business Model and Regulation,” 2007
  4. H.S. Jang, “Technology Acceptance Model with Web Interactivity,” The Journal of MIS research 12(4), 2002
  5. V. Venkatesh, M. Morris, G. Davis, F. Davis, “User Acceptance of Information Technology: Toward a Unified View,” MIS Quarterly 27(3), pp.425-478, 2003 https://doi.org/10.2307/30036540
  6. F.D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Quarterly 13(3), pp.319-339, 1989 https://doi.org/10.2307/249008
  7. S. Jeroen and W. Martin, “A Meta-analysis of the Technology Acceptance Model: Investigating Subjective Norm and Moderation Effects,” Information and Management 44, pp.90-103, 2007 https://doi.org/10.1016/j.im.2006.10.007
  8. V. Venkatesh, “Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model,” Information System Research 11(4), pp.342-365, 2000 https://doi.org/10.1287/isre.11.4.342.11872
  9. R.L. Thompson, C.A. Higgins and J.M. Howell, “Personal Computing: Toward a Conceptual Model of Utilization,” MIS Quarterly 15(1), pp.124-143, 1991 https://doi.org/10.2307/249443
  10. D.R. Compeau and C.A. Higgins, “Application of Social Cognitive Theory to Training for Computer Skills,” Information Systems Research 6(2), pp.118-143, 1995 https://doi.org/10.1287/isre.6.2.118
  11. H.C. Lucas and V.K. Spitler, “Technology Use and Performance: A Field Study of Broker Workstations,” Decision Science 30(2), pp.291-311, 1999 https://doi.org/10.1111/j.1540-5915.1999.tb01611.x
  12. J. Lin and H. Lu, “Towards an Understanding of the Behavioral Intention to Use a Web Site,” International Journal of Information Management 38, 2000 https://doi.org/10.1016/S0268-4012(00)00005-0
  13. I. Im, Y.B. Kim and H.J. Han, “The Effects of Perceived Risk and Technology Type on User's Acceptance of Technologies,” Information and Management 45, pp.1-9, 2008 https://doi.org/10.1016/j.im.2007.03.005
  14. S.S. Al-Gahtani, G.S. Hubona and J. Wang, “Information Technology in Saudi Arabia: Culture and the Acceptance and Use of IT,” Information and Management 44, pp.681-691, 2007 https://doi.org/10.1016/j.im.2007.09.002
  15. M. Fishbein and I. Ajzen, “Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research,” Addison-Wesley, Reading, MA, pp.311-315, 1975
  16. D. Gefen and D. Straub, “The Relative Importance of Perceived Ease of Use in IS Adoption,” Journal of the Association for Information Systems 1(8), 2000
  17. J.W. Moon, and Y.G. Kim, “Extending the TAM for a World Wide Web context,” Information and Management 38, 2001 https://doi.org/10.1016/S0378-7206(00)00061-6
  18. E. Karahanna and D.W. Straub, “The Psychological Origins of Perceived Usefulness and Ease-of-use,” Information and Management 35(4), pp.237-250, 1999 https://doi.org/10.1016/S0378-7206(98)00096-2
  19. U. Varshney, A. Snow, M. McGivern and C. Howard, “Voice over IP,” Communications of the ACM 45(1), pp.89-96, 2002 https://doi.org/10.1145/502269.502271
  20. M. Zubey, W. Wagner and J.R. Otto, “A Conjoint Analysis of Voice over IP Attributes,” Internet Research 12(1), pp.7-15, 2002 https://doi.org/10.1108/10662240210415781
  21. I. Constantiou and K. Kautz, “Economic Factors and Diffusion of IP Telephony: Empirical Evidence from an Advanced Market,” Telecommunications Policy 32(3-4), pp.197-211, 2008 https://doi.org/10.1016/j.telpol.2007.07.010
  22. 유호선, 김민용, 권오병, “유비쿼터스 컴퓨팅 서비스 수용에 영향을 미치는 요인 연구”, 한국전자거래학회 13(2), pp.117-147, 2008
  23. E. C. Gabarino and J. A. Edell, “Cognitive Effort, Affect, and Choice,” Journal of Consumer Research 24, 1997
  24. 소형기, 손소영, “무선인터넷 서비스 고객만족도 분석을 위한 구조방정식 모형”, 대한산업공학회, 제14권, 제2호, pp.182-189, 2001
  25. Monroe, B. Kent and R. Krishnan, “The Effect of Price on Subjective Product Evaluations, Perceived Quality: How Consumers View Stores and Merchandise,” Lexington, MA: Lexington Books, pp.209-232, 1985
  26. B. Kijsanayotin, S. Pannarunothai and S.M. Speedie, “Factors Influencing Health Information Technology Adoption in Thailand's Community Health Centers: Applying the UTAUT Model,” International Journal of Medical Informatics 78, pp.404-416, 2009 https://doi.org/10.1016/j.ijmedinf.2008.12.005
  27. F.R. David and R. Dholakia, “Interactivity and Vividness Effects on Social Presence and Involvement with a Web-Based Advertisement,” Journal of Business Research 58(3), pp.387-396, 2005 https://doi.org/10.1016/S0148-2963(03)00106-1
  28. S.J. McMillan and J.S. Hwang, “Measures of Perceived Interactivity: An Exploration of the Role of Direction of Communication, User Control and Time in Shaping Perception of Interactivity,” Journal of Advertising 31(3), pp.29-42, 2002 https://doi.org/10.1080/00913367.2002.10673674
  29. S. Taylor and P. Todd, “Assessing IT Usage: The Role of Prior Experience,” MIS Quarterly 19, pp. 561-570, 1995 https://doi.org/10.2307/249633
  30. Y.S. Wang and Y.W. Shih, “Why Do People Use of Information Kiosks? A Validation of the Unified Theory of Acceptance and Use of Technology,” Government Information Quarterly 26, pp.158-165, 2009 https://doi.org/10.1016/j.giq.2008.07.001
  31. R.B. Kline, “Principles and Practice of Structural Equation Modeling,” 2nd eds. NY: Guilford Press, 2005
  32. D.W. Gerbing and J.G. Hamilton, “Viablity of Exploratory Factor Analysis as a Precursor to Confirmatory Factor Analysis,” Structural Equation Modeling 3(1), pp.62-72, 1996 https://doi.org/10.1080/10705519609540030
  33. 김대업, “논문작성절차에 따른 구조방정식 모형분석”, 학현사, 2008
  34. R.P. Bagozzi and Y.J. Yi, “Multitrait-Multimethod Matrices in Consumer Research,” Journal of Consumer Research 17(4), pp.426-439, 1991 https://doi.org/10.1086/208568

Cited by

  1. A study on Factors that Influence the Usage of Mobile Apps - Based on Flow Theory and Unified Theory of Acceptance and Use of Technology - vol.14, pp.4, 2013, https://doi.org/10.7472/jksii.2013.14.4.73