DOI QR코드

DOI QR Code

Changes in the Optogalvanic Signal Amplitude in a Hollow Cathode Discharge

  • Lee, Jun-Hoi (Engineering Education Center of Accreditation, Chungnam National University) ;
  • Koo, Kyung-Wan (Department of Defense Science and Technology, Hoseo University) ;
  • Lee, Ki-Sik (School of Electronic and Electrical Engineering, Dankook University)
  • Published : 2009.12.31

Abstract

The spatial distribution of the optogalvanic (OG) signal in argon at the 801.489 nm ($1s_5-2p_8$ transition at the metastable level in Paschen notation) was investigated in the radial direction of a hollow cathode discharge tube. The results of this experiment showed that the OG signal amplitude decreases in accordance with the following two conditions; first, the level of discharge current and second, the distance from the cathode dark space. These results can be quantified by analyzing the electron density profile along the discharge regions, which can directly influence the collisional ionization induced by electron impact.

Keywords

References

  1. B. Barbieri, N. Beverini, and A. Sasso, Rev. Mod. Phys. 62, 603 (1990) https://doi.org/10.1103/RevModPhys.62.603
  2. S. Yamaguchi and M. Suzuki, Appl. Phys. Lett. 41, 597 (1982) https://doi.org/10.1063/1.93622
  3. M. Hippler and J. Pfab, Optic. Commun. 97, 347 (1993) https://doi.org/10.1016/0030-4018(93)90501-U
  4. A. Sasso, M. I. Schisano, G. M. Tino, and M. Inguscio, J. Chem. Phys. 93, 7774 (1990) https://doi.org/10.1063/1.459357
  5. P. Pianarosa, Y. Demers, and J. M. Gagne, J. Opt. Soc. Am. B Opt. Phys. 1, 704 (1984) https://doi.org/10.1364/JOSAB.1.000704
  6. A. Ben-Amar, G. Erez, S. Fastig, and R. Shuker, Appl. Opt. 23, 4529 (1984) https://doi.org/10.1364/AO.23.004529
  7. R. Shuker, A. Ben-Amar, and G. Erez, J. Appl. Phys. 54, 5685 (1983) https://doi.org/10.1063/1.331786
  8. E. C. Jung, S. P. Rho, J. Lee, J.-H. Lee, and H. Cho, Optic. Commun. 149, 283 (1998) https://doi.org/10.1016/S0030-4018(97)00734-7
  9. J. H. Lee, Hyuck Cho, E. C. Jung, and J. M. Lee, J. Korean Phys. Soc. 38, 99 (2001)
  10. J. H. Lee, J. Phys. Soc. Jpn. 72, 1107 (2003) https://doi.org/10.1143/JPSJ.72.1107
  11. B. N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York, 1980)
  12. V. S. Bordin and Y. M. Kagan, Optic. Spectros. 23, 108 (1967)
  13. S. Caroli, Progr. Anal. Atom. Spectros. 6, 253 (1983)
  14. E. C. Jung, J. Lee, J. H. Lee, and H. Cho, J. Korean Phys. Soc. 34, 209 (1999)
  15. W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities. Vol. 2: Sodium through Calcium. A Critical Data Compilation (National Standard Reference Data Series) (US Department of Commerce, National Bureau of Standards, Washington, DC, 1969), p. 187
  16. R. R. Arslanbekov, A. A. Kudryavtsev, and R. C. Tobin, Plasma Sources Sci. Technol. 7, 310 (1998) https://doi.org/10.1088/0963-0252/7/3/009
  17. J. P. Martinez and J. C. Amare, J. Phys. D Appl. Phys. 31, 312 (1998) https://doi.org/10.1088/0022-3727/31/3/010
  18. K. C. Smyth and P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978) https://doi.org/10.1016/0009-2614(78)84015-9
  19. E. Miron, I. Smilanski, J. Liran, S. Lavi, and G. Erez, IEEE J. Quantum. Electron. QE-15, 194 (1979) https://doi.org/10.1109/JQE.1979.1069978
  20. A. Ben-Amar, G. Erez, and R. Shuker, J. Appl. Phys. 54, 3688 (1983) https://doi.org/10.1063/1.332602
  21. D.E. Murnick, R. B. Robinson, D. Stoneback, M. J. Colgan, and F. A. Moscatelli, Appl. Phys. Lett. 54, 792 (1989) https://doi.org/10.1063/1.100848
  22. V. D'Accurso, F. A. Manzano, and V. B. Slezak, Appl. Phys. B. Laser. Optic. 63, 375 (1997) https://doi.org/10.1007/BF01828741