DOI QR코드

DOI QR Code

Effects of Kimchi Lactic Acid Bacteria Lactobacillus sp. OPK2-59 with High GABA Producing Capacity on Liver Function Improvement

GABA 생성능 우수 김치 젖산균 Lactobacillus sp. OPK2-59의 간 기능 개선 효과

  • Bae, Mi-Ok (Dept. of Food Science and Human Nutrition, Chonbuk National University,Dept. of Food and Biotechnology, Woosuk University) ;
  • Kim, Hye-Jin (Dept. of Food and Biotechnology, Woosuk University) ;
  • Cha, Youn-Soo (Dept. of Food Science and Human Nutrition, Chonbuk National University) ;
  • Lee, Myung-Ki (Korea Food Research Institute) ;
  • Oh, Suk-Heung (Dept. of Food and Biotechnology, Woosuk University)
  • 배미옥 (전북대학교 식품영양학과,우석대학교 식품생명공학과) ;
  • 김혜진 (우석대학교 식품생명공학과) ;
  • 차연수 (전북대학교 식품영양학과) ;
  • 이명기 (한국식품연구원) ;
  • 오석흥 (우석대학교 식품생명공학과)
  • Published : 2009.11.30

Abstract

This study investigated the effect of improved liver function in rats administered with ethanol by kimchi lactic acid bacteria with high GABA producing capacity. Sprague-Dawley male rats were divided into four groups; normal diet control (NC), ethanol control (EC), ethanol+Lactobacillus sp. OPK2-59 normal powder (EL1), ethanol+Lactobacillus sp. OPK2-59 GABA powder (EL2) and fed for 6 weeks. Analysis showed that there were no significant differences in body weight and feed consumption among the groups during the experimental period. Also, there were no significant differences in organ weight among the groups. The test results showed total cholesterol and triglyceride in the blood concentration that were increased by ethanol administration were significantly lowered in EL2 group. Liver triglyceride was also significantly lowered in the EL2 group compared with the EC group. Serum GOT and GPT, and liver GOT levels were significantly lower in the EL2 group compared with the EC group. Serum ethanol concentration was lower in the EL1 and EL2 groups compared with the EC group. SOD activities in liver were significantly increased in the EL1 and EL2 groups compared with the EC group. These results suggest that Lactobacillus sp. OPK2-59 GABA powder improves lipid and enzyme profiles of rats administered with ethanol.

본 연구는 김치에서 분리한 GABA 생성능이 우수한 젖산균을 이용하여 알코올 투여 흰쥐의 간 기능 개선에 미치는 영향을 조사하였다. 실험동물의 체중 및 식이섭취량, 혈청 및 간 지질농도, 간 질환과 관련된 혈청 및 간 효소 활성, 혈중 에탄올 농도, 항산화 효소 활성을 측정한 결과는 다음과 같다. 체중 및 식이섭취량은 각 그룹간의 유의적인 차이를 나타내지 않았으며 각 기관 무게도 군 간의 유의적인 차이를 나타내지 않았으나 정상식이 섭취 군에 비해 알코올 투여 군에서 체중과 식이섭취량이 약간 감소하는 경향을 보였다. 알코올 섭취로 인해 높아진 혈중 총 콜레스테롤 및 중성지질은 젖산균 GABA 파우더투여 군에서 유의적인 차이를 보이며 정상식이 군과 비슷한 수준으로 낮아졌다. 또한 HDL-cholesterol은 군 간의 차이를 보이지는 않았으나, 알코올투여 군에 비해 높아지는 경향을 보였다. 간의 총콜레스테롤 농도는 군 간의 유의적인 차이는 없었으나, 중성지질 농도는 실험군 간의 현저한 차이를 보이며 알코올 투여 군에 비해 젖산균 GABA 파우더 투여 군에서 정상식이 군과 비슷한 수준으로 낮아졌다. 혈중 효소활성 GOT, GPT는 알코올투여 군에 비해 젖산균 GABA 파우더투여 군에서 유의적인 차이를 보이며 정상수준으로 낮아졌으며, 간 GOT는 젖산균 GABA 파우더투여로 인해 현저한 차이를 보이며 알코올투여 군에 비해 낮아졌다. GPT는 각 그룹 간 유의적인 차이를 보이지 않았다. 혈중 알코올 농도를 시간별(0분, 30분, 60분, 120분, 240분, 360분)로 측정한 결과 그룹간의 유의적인 차이를 나타내지 않았으나 젖산균 파우더투여 군에서 알코올 대사를 촉진하는 경향을 보였다. 각 그룹간의 간 조직 중 SOD 활성은 알코올투여 군에 비해 젖산균 파우더투여 군과 젖산균 GABA 파우더 투여 군에서 유의적으로 높은 SOD 수준을 나타내었다. 본 실험을 통해 김치에서 분리한 젖산균 OPK2-59 GABA 파우더가 혈중 총 콜레스테롤과 중성지질, 간의 중성지질 농도를 유의적으로 감소시키고, 혈중 GOT, GPT, 간 GOT 효소활성 감소, 알코올대사 촉진, 항산화 효소활성을 상승시키는 효과를 확인하였다. 이는 김치유래의 젖산균 OPK2-59 GABA 파우더가 알코올투여 흰쥐의 지방대사 및 간 기능을 개선시키는데 기여할 수 있음을 보여주는 것으로, 향후 이러한 효능에 대한 심도 있는 기작연구와 더불어 다른 효능에 대한 연구가 기대된다. 또한 본 젖산균을 김치발효용 스타터로 활용하여 기능성식품을 개발하게 된다면 우수한 전통생물자원을 이용하여 국민건강 증진에 크게 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. Oh S.H, Cha Y.S, Choi D.S. 1999. Effects Angelica gigas Nakai diet on lipid metabolism, alcohol metabolism and liver function of rats administered with chromic ethanol. J Korean Soc Agric Chem Biotechnol 42: 29-33
  2. Shon H.S, Jung B.M, Cha Y.S. 2001. Effects of Ixeris sonchifolia H. diet on lipid metabolism and liver function of rats administered with ethanol. Korean J Nutr 34: 493-498
  3. French K.T. 1989. Biochemical basis for alcohol-induced liver injury. Clin Biochem 22: 41-49 https://doi.org/10.1016/S0009-9120(89)80067-0
  4. Oh S.H. 2007. Effects and applications of germinated brown rice with enhanced levels of GABA. Food Sci Indus 40: 41-46
  5. Kang T.J, Oh S.H. 2007. GABA production and use. BRIC BioWave 9: 1-18
  6. Kim J.H, Kwon M.J, Lee S.Y, Ryu J.D, Moon G.S, Cheigh H.S, Song Y.O. 2002. The effect of Kimchi intake on production of free radicals and anti-oxidative enzyme activities in the liver of sam. J Korean Soc Food Sci Nutr 31: 109-116 https://doi.org/10.3746/jkfn.2002.31.1.109
  7. Park K.Y. 2000. Nutrition, function and anticancer effect of Kimcni. Sci Technol Kimchi 6: 124-131
  8. Choi H.S. 2005. Physiological components and health function of Kimchi. Food Preserv Proces Indus 4: 2-10
  9. Han H.L. 1991. The ecology of Kimchi lactic acid bacteria. Korean J Microbiol 7: 68-75
  10. Cho Y.R, Chang J.Y, Chang H.C. 2007. Production of ${\gamma}-Aminobutyric$- aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17: 104-109
  11. Park K.B, Oh S.H. 2007. Cloning, sequencing and expression of a novel glutamate decarboxlase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technol 98: 312-319 https://doi.org/10.1016/j.biortech.2006.01.004
  12. Seok J.H, Park K.B, Kim Y.H, Bae M.O, Lee M.K, Oh S.H. 2008. Production and characterization of Kimchi with enhanced levels of γ-aminobutyric acid. Food Sci Biotechnol 17: 940-946
  13. Folch J, Lees M, Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509
  14. Bernt E, Gutmann I. 1974. Ethanol determination with alcohol dehydrogenase and NAD. In Methods of enzymatic analysis. Bergmeyer HV, ed. Chemic Int., Deerfield Beach, FL, USA. Vol 3, p 1499-1502
  15. Ayako O.M, Irwin F. 2001. Subcellular distribution of superoxide dismutases (SOD) in rat liver. J Biol Chem 276: 38388-38393 https://doi.org/10.1074/jbc.M105395200
  16. Cha Y.S, Oh S.H. 2000. Investigation of ${\gamma}-Aminobutyric$-aminobutyric acid in Chinese cabbages and effects of the cabbage diets on lipid metabolism and liver function of rats administered with ethanol. J Korean Soc Food Sci Nut 29: 500-505
  17. Mezey E. 1980. Alcoholics liver disease: roles of alcohol and malnutrition. Am J Clin Nutr 33: 2709-2718 https://doi.org/10.1093/ajcn/33.12.2709
  18. Scheig R. 1970. Effects of ethanol on the liver. Am J Clin Nut 23: 467-473 https://doi.org/10.1093/ajcn/23.4.467
  19. Lieber C.S. 1994. Alcohol and the liver. Gastro 106: 1085- 1180 https://doi.org/10.1016/0016-5085(94)90772-2
  20. Pikaar N.A, Wdedl M, Vander Beek E.J, Van Dokkum W, Kempen H.J, Kluft C, Ockhuixen T, Hermus R.J. 1987. Effects of moderate alcohol consumption on platelet aggregation fibrinolysis and blood lipids. Metabolism 36: 538-548 https://doi.org/10.1016/0026-0495(87)90163-6
  21. Soh J.R, Yamamoto T.T, Cha Y.S. 2003. The effects of carnitine and/or gamma-aminobutyric acid (GABA) supplementation on the recovery of chronic ethanol administered rats. J Food Sci Nutr 8: 119-123
  22. Oh S.H, Soh J.R, Cha Y.S. 2003. Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J Med Food 6: 115-121 https://doi.org/10.1089/109662003322233512
  23. Cha Y.S. 1993. Cellular and enzymatic basis for carnitine-mediated atenuation of ethanol metabolism. PhD Dissertation. The University of Tennessee, Knoxville, USA
  24. Nakamura T, Matsubaysahi T, Kamachi K, Hasegawa T, Ando Y, Omori M. 2000. γ-Aminobutyric (GABA)-rich chlorella depresses the elevation of blood pressure in spontaneously hypertensive rats (SHR). Nippon Nogeikagaku Kaishiin Japanese 74: 907-909
  25. Krogsgaard Larsen P. 1989. GABA receptors. In Receptor phamacology function. Williams M, Glennon R.A, Timmermans PMWM, eds. Marcel Dekker, Inc., New York, USA. p 349-383
  26. Lieber C.S. 1991. Hepatic, metabolic and toxic effects of ethanol. Alcohol Clin Exp Res 15: 573-592 https://doi.org/10.1111/j.1530-0277.1991.tb00563.x
  27. Goh K.H. 1998. Alcohol commonsense encyclopedia. Korea Alcohol Liquor Indus Assoc. p 1-288
  28. Ames B.N, Shigeaga M.K, Hagen T.M. 1993. Oxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915-7922 https://doi.org/10.1073/pnas.90.17.7915
  29. Bergsten P, Amitai G, Kehrl J, Levine M. 1990. Ascorbic acid content of humal B and T lymphocytes and monocytes. Ann NYA cad Sci 587: 275-277 https://doi.org/10.1111/j.1749-6632.1990.tb00155.x
  30. Epe B. 1991. Genotoxocity of singlet oxygen. Chem Biol Interact 80: 239-260 https://doi.org/10.1016/0009-2797(91)90086-M
  31. Fanton J.C, Ward P.A. 1982. Role of oxygen-derived free radicals and metabolites in leukocytes-dependent inflammatory reactions. Nm J Pathol 107: 397-418
  32. Pryor W.A, Stone K. 1993. Oxidants in cigarette smoke: radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann NYA Cad Sci 686: 12-18 https://doi.org/10.1111/j.1749-6632.1993.tb39148.x
  33. Park K.Y, Cheigh H.S. 2000. Antimutagenic and anticancer effects of lactic acid bacteria isolated from Kimchi. Bioindustry News 13: 11-17

Cited by

  1. Changes in the taste compounds of Kimchi with seafood added during its fermentation vol.20, pp.3, 2013, https://doi.org/10.11002/kjfp.2013.20.3.404
  2. Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi vol.33, pp.5, 2013, https://doi.org/10.5851/kosfa.2013.33.5.595
  3. Hepatoprotective effect ofHippocampus abdominalishydrolysate vol.59, pp.3, 2016, https://doi.org/10.3839/jabc.2016.046
  4. Effects of Extract of Lactic Acid Bacteria Culture Media on Quality Characteristics of Pork Loin and Antimicrobial Activity against Pathogenic Bacteria during Cold Storage vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1476
  5. Production and Fermentation Characteristics of Mukeunji with a Mixed Starter vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1467
  6. Changes in the Levels of γ-Aminobutyric Acid and Free Amino Acids during Kimchi Fermentation vol.29, pp.6, 2013, https://doi.org/10.9724/kfcs.2013.29.6.671
  7. Chemical and sensory profiles of dongchimi (Korean watery radish kimchi) liquids based on descriptive and chemical analyses vol.24, pp.2, 2015, https://doi.org/10.1007/s10068-015-0065-4
  8. Production of GABA (gamma amino butyric acid) by Lactic Acid Bacteria vol.33, pp.3, 2013, https://doi.org/10.5851/kosfa.2013.33.3.377
  9. GABA-enriched Fermented Laminaria japonica Protects against Alcoholic Hepatotoxicity in Sprague-Dawley Rats vol.14, pp.2, 2011, https://doi.org/10.5657/FAS.2011.0079
  10. Lactobacillus plantarumLG42 Isolated from Gajami Sik-Hae Inhibits Adipogenesis in 3T3-L1 Adipocyte vol.2013, 2013, https://doi.org/10.1155/2013/460927
  11. Green Tea Extract (Camellia sinensis) Fermented byLactobacillus fermentumAttenuates Alcohol-Induced Liver Damage vol.76, pp.12, 2012, https://doi.org/10.1271/bbb.120598
  12. 잡곡발효물의 제조와 항산화 활성 비교 vol.42, pp.8, 2009, https://doi.org/10.3746/jkfn.2013.42.8.1175
  13. 보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진 vol.25, pp.1, 2017, https://doi.org/10.11625/kjoa.2017.25.1.171
  14. University Students’ Eating Habit, Perception and Acceptance of Korean Food in Jeollabuk-do Province vol.33, pp.5, 2017, https://doi.org/10.9724/kfcs.2017.33.5.588