• 제목/요약/키워드: kimchi lactic acid bacteria

Search Result 638, Processing Time 0.03 seconds

A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria (김치 및 김치 유래 유산균의 건강 기능성에 대한 연구 동향 조사)

  • Kim, Bohkyung;Mun, Eun-Gyung;Kim, Doyeon;Kim, Young;Park, Yongsoon;Lee, Hae-Jeung;Cha, Youn-Soo
    • Journal of Nutrition and Health
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: This review article provides an overview of the trends of research papers on the health benefits of kimchi and kimchi lactic acid bacteria published from 1995 to 2017. Methods: All publications from 1995 to 2017 regarding kimchi and kimchi lactic acid bacteria were collected, reviewed, and classified. This review article covers the publications of the health benefits of kimchi and kimchi lactic acid bacteria on experimental, clinical trials, and epidemiology studies. Results: The number of publications on kimchi over the period were 590: 385 publications in Korean and 205 publications in English. The number of publications on the health benefits of kimchi and kimchi lactic acid bacteria were 95 in Korean and 54 in English. The number of publications on kimchi and kimchi lactic acid bacteria were 84 and 38, respectively, in the experimental models. Ten research papers on kimchi in clinical trials and 7 publications in epidemiology were found. Kimchi or kimchi lactic acid bacteria had protective effects against oxidative stress, mutagenicity, toxicity, cancer, dyslipidemia, hypertension, immunity, and inflammation in in vitro, cellular, and in vivo animal models. Moreover, kimchi had effects on the serum lipids, intestinal microbiota, iron status, obesity, and metabolic parameters in human clinical trials. In epidemiology, kimchi had effects on hypertension, asthma, atopic dermatitis, rhinitis, cholesterol levels, and free radicals. Conclusion: This review focused on the publications regarding the health benefits of kimchi and kimchi lactic acid bacteria, suggesting the future directions of studies about kimchi and kimchi lactic acid bacteria by producing a database for an evaluation of the health benefits of kimchi.

Effect of Kimchi ingredients on the growth of pathogenic and lactic acid bacteria (김치부재료의 유산균 증식 및 유해균 억제효과)

  • Kang, Sun-Yi;Han, Myung-Joo
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.838-843
    • /
    • 2005
  • When ingredients of Kimchi were mixed and stored in $18^{\circ}C$, lactic acid bacteria, such as Leuconostoc mesenteroides and Lactobacillus plantarum, were selectively grown up. Herefore, to understand why lactic acid bacteria were selectively cultured in Kimchi, antibacterial activities of Kimchi ingredients against some pathogens and Kinlchi lactic acid bacteria were investigated. Kimchi mixed with all ingredients significantly inhibited the growth of all tested pathogens: S. typhimurium, S. sonnei, and E. coli. Kimchi without green onion, garlic or ginger inhibited the growth of S. typhimurium, but did not E. coli and S. sonnei. However, Kimchi without red pepper powder did not inhibit the growth of all tested pathogens. All ingredients of Kimchi did not inhibit the growth of L. plantarum and L. mesenteroides. These results suggest that Kimchi ingredients can synergistically inhibit the growth of pathogens and Kimchi may be a selective medium for lactic acid bacteria.

Hygienic Superiority of Kimchi (김치의 위생학적 우수성)

  • Kim, Yong-Suk;Shin, Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • Kimchi is a representative traditional food in Korea and a type of vegetable product that is the unique complex lactic acid fermentation in the world. It can be considered as a unique fermented food generated by various flavors, which are not included in raw materials, that can be generated by mixing and fermenting various spices and seasonings, such as red pepper powder, garlic, ginger, and salted fish, added to Chinese cabbages. Functionalities in Kimchi have been approved through several studies and the probiotic function that is mainly based on lactic acid bacteria including their physical functions in its contents has also verified. Studies on the verification of the safety of Kimchi including its physiological functions have been conducted. In particular, the function of lactic acid bacteria, which is a caused of the fermentation of Kimchi. Although the lactic acid bacteria contributed to the fermentation of Kimchi is generated from raw and sub-materials, the lactic acid bacteria attached on Chinese cabbages has a major role in the process in which the fermentation temperature and dominant bacteria are also related to the process. The salt used in a salt pickling process inhibits the growth of the putrefactive and food poisoning bacteria included in the fermentation process of Kimchi and of other bacteria except for such lactic acid bacteria due to the lactic acid and several antimicrobial substances generated in the fermentation process, such as bacteriocin and hydrogen peroxide. In addition, the carbon dioxide gas caused by heterolactic acid bacteria contributes to the inhibition of aerobic bacteria. Furthermore, special ingredients included in sub-materials, such as garlic, ginger, and red pepper powder, contribute to the inhibition of putrefactive and food poisoning bacteria. The induction of the change in the intestinal bacteria as taking Kimchi have already verified. In conclusion, Kimchi has been approved as a safety food due to the fact that the inhibition of food poisoning bacteria occurs in the fermentation process of Kimchi and the extinction of such bacteria.

Antimutagenic Activities of Cell Wall and Cytosol Fractions of Lactic Acid Bacteria Isolated from Kimchi

  • Park, Kun-Young;Kim, So-Hee;Son, Tae-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.329-333
    • /
    • 1998
  • Cell wall (lactic acid bacteria-sonicated precipitate ; LAB-SP) and cytosoll(lactic acid bacteria-sonicated supernatant ; LAB-SS) fractions were prepared from kimchi fermenting lactic acid bacteria such as Leuconostoc mesenteroides, Lactobacillus brevis, Lactobacillus fermentum , Lactobacillus plantarum and Pediococcus acidilactici, with Lactobacillus acidophillus isolated from yogurt. Using the Ames mutagenicity test and SOS chormotest system, the antimutagenic acitivity of those cell fractions was studied . One hundered eighty $\mu$l of LAB-SP from lactic acid bacteria isolated from kimchi, excepting Pediococcus acidilactici, supressed the mutagenicity of 4-nitroquinoline-1-oxide(4-NQO) in Ames mutagenicity test and SOS chromotes system , by above 90% and 60% , respectively. LAB-SP from lactic acid bacteria also inhibited the mutagenicity mediated by 3-amino-1-methyl-5H-pyrido [4,3-b]indole (Trp-P-2). Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus acidphillus had higher antimutagenicity against Trp-P-2). Lactobacillus fermentum , Lactobacillus plantarum , and Lactobacillus acidphillus had higher antimutagenicity against Trp-P-2 than the other lactic acid bacteria. However, LAB-SS of lactic acid bacteria did not show any mutagenic activity against 4-NQO in Ames mutagenicity test and SOS chromotest systems. On the mutagenicity of MEIQ and Trp-P-2 , LAB-SS of lactic acid bacteria from kimchi or dairy products exhibited a weaker inhibitory effect than LAB-SP of those bacteria. These results represent that, whether the lactic acid bacteria from kimchi are viable or nonviable, antimutagenic acitivity was still effective. We suggest that the strong, antimutaganic activity of lactic acid bacteria might be found in the cell wall fraction , rather than in the cytosol fraction.

  • PDF

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) During the Ripening and Fermentation-Part 2

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2008
  • The Chinese cabbage kimchi, baechoo-kimchi, is the most popular type of kimchi in Korea. This study was performed to investigate the changes of index microorganisms (aerobic bacteria, psychrotrophilic bacteria, coliforms, and Escherichia coli), lactic acid bacteria, pH, and acidity of kimchi during the long-term fermentation and ripening. A homemade-style traditional Korean baechoo-kimchi, was prepared from Chinese cabbage, red pepper, green onion, garlic, ginger, and salt-fermented anchovy sauce, and then incubated at $10^{\circ}C$ for 28 days. In the baechoo-kimchi, the number of aerobic bacteria increased with time. The number of psychrotrophilic bacteria maintained their numbers $(10^4CFU/g)$ in the kimchi during the fermentation. Coliforms and E. coli were not detected in the kimchi. The pH of kimchi decreased and the acidity of kimchi increased over time. Lactic acid bacteria, which are representative of fermentative microorganisms in the kimchi process showed rapid growth in the earlier stage of fermentation and increased steadily after 7 days. The counts of lactic acid bacteria were at a level of $10^4CFU/g$ early in the fermentation stage, reaching a level of $10^8CFU/g$ after 14 days, and at this point pH was 4.18 and acidity reached 0.63, indicating that the optimal state of kimchi fermentation. This study suggests that the lactic acid bacteria which were proliferated in kimchi during the ripening and fermentation could contribute to improving the taste and flavor of kimchi and inhibit the growth of pathogenic microorganisms that might exist in kimchi.

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) during the Ripening and Fermentation-Part 1 (김치의 숙성 및 발효중 오염지표미생물과 유산균의 변화-제1보)

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.79-85
    • /
    • 2005
  • This study was undertaken to investigate the changes of index microorganisms and lactic acid bacteria of traditional Korean fermented vegetables (kimchi) during the ripening and fermentation period. A type of kimchi, baechoo-kimchi, was prepared and stored at $10^{\circ}C$ for 8 days. The numbers of the total aerobic bacteria, psychrotrophilic bacteria, coliform bacteria, and Escherichia coli in the kimchi and also in raw materials of the kimchi (Chinese cabbage, green onion, ginger, garlic, and red pepper) were counted using appropriate media. The highest number of aerobic bacteria was detected from ginger, then red pepper, then garlic, then Chinese cabbage, and lowest number from green onion. The highest number of psychrotrophilic bacteria was detected from red pepper, then Chinese cabbage, then garlic, then ginger, and the lowest number from green onion. Coliforms and E. coli were not detected from all of the raw materials of kimchi. Total aerobic bacteria and lactic acid bacteria of the kimchi showed gradually increasing during ripening and fermentation. The number of psychrotrophilic bacteria showed a similar level in the kimchi. Coliform bacteria were detected at the 3rd, 4th, and 5th day of the kimchi fermentation period, although they were not detected from the raw materials of the kimchi. However, the bacteria were not detected in the kimchi after 6 days. E. coli was not detected in all kimchi samples. The pH value of the kimchi gradually decreased, and acidity increased over fermentation period. This study indicates that there was contamination of coliform bacteria during the process of kimchi preparation, and lactic acid bacteria proliferated in the kimchi during fermentation inhibited the growth of coliforms. More research is needed to evaluate the inhibitory effects of each raw materials of kimchi.

Cholesterol-Lowering Effect and Anticancer Activity of Kimchi and Kimchi Ingredients (김치와 김치재료의 콜레스테롤 저하 및 항암효과)

  • 이재준;정영기
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.743-752
    • /
    • 1999
  • The purpose of the paper is to explore the current knowledge on the nutritional evaluation, cholesterol-lowering effect and antitumor activity of kimchi and its ingredients(Korean cabbage, garlic, red pepper powder, ginger and onion). Kimchi contains high contents of nutrients such as vitamins(ascorbic acid, $\beta$-carotene and vitamin B complex), minerals(calcium, potassium, iron and phosphorous), essential amino acids and dietary fiber. Kimch also contains high levels of lactic acid bacteria, allicin, capsaicin, organic acid, phenol compounds, flavonoid and sulfur compounds. The dietary fiber and lactic acid bacteria isolated from kimchi are effective in improving intestinal microflora of human. Isoluble dietary fiber shows anticancer activity, but soluble dietary fiber shows hypocholesterolemic effect. Lactic acid bacteria isolated from kimchi acts as a hypocholesterolemic or anticancer agent. A major ingredient of kimchi is mainly cruciferous and allium family vegetables, which were also reported to prevent cancer and atherosclerosis. It is suggested that kimchi is important not only as one of the traditional fermented Korean food but also as therapeutic agent for carcinogenesis and hypercholesterolemic state.

  • PDF

Effect of cryoprotectant agents on the growth of lactic acid bacteria during storage of powdered Kimchi (분말김치 저장 중 젖산균 생육에 대한 동결건조보호제 첨가 효과)

  • Song, Jung-Hee;Cho, Jungeun;Chung, Youngbae;Seo, Hye-Young
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.167-173
    • /
    • 2015
  • This study was conducted to evaluate effect of adding cryoprotectant agents on the growth of lactic acid bacteria during storage of powdered Kimchi. Powdered Kimchi was prepared by adding 1.5% cryoprotectant (glucose, maltose, lactose, and sucrose) and freeze-dried. For the preparation of micro-sized particle of Kimchi powder, the freeze-dried Kimchi was powered at 14,000 rpm for 2 min. The survival ratio of lactic acid bacteria in the powdered Kimchi was monitored during storage period of 4 months at -20, 0, 4, and $25^{\circ}C$ after the capsulation of the powedered Kimchi. The number of lactic acid bacteria in the powdered Kimchi capsule was the greatest stored at $-20^{\circ}C$, and the addition of glucose in cryoprotectant showed higher survival rate of lactic acid bacteria than that of control. More than $10^7CFU/g$ of lactic acid bacteria were survived in the powdered Kimchi stored at 0 and $4^{\circ}C$. However, the lactic acid bacteria were not detected in the powdered Kimchi stored at $25^{\circ}C$. As a results, the addition of cryoprotectant agents in the manufacturing process improved the survival rate of lactic acid bacteria in powered Kimchi products with accompanying with a cold-chain system for the distributon of powdered Kimchi products.

Inhibition of Lactic Acid Bacteria in Kimchi Fermentation by Nisin

  • CHOI, MIN HO;YUN HEE PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.547-551
    • /
    • 1998
  • Sixty isolates of lactic acid bacteria found in kimchi, a traditional Korean dish of fermented vegetables, were tested for nisin sensitivity. Of the sixty isolates, all belonging to the genera Leuconostoc, Lactobacillus, and Pediococcus, fifty isolates were sensitive to nisin at a concentration of 100 IU/$m\ell$, and four isolates appeared to be resistant to nisin. This demonstrated that the nisin sensitivity of lactic acid bacteria found in kimchi varied considerably among isolates. In MRS broth containing nisin at concentrations of 100 to 300 IV/$m\ell$, the growth of sensitive isolates of Leuconostoc mesenteroides and Lactobacillus plantarum was inhibited for two to three days at 2$0^{\circ}C$. When nisin was added to kimchi preparations at a concentration of 100 IU/$m\ell$, the growth of lactic acid bacteria was delayed and reached a maximum two days later than that in kimchi without nisin. These results suggest the possible use of nisin in kimchi preparation, at recommended levels, to control the lactic acid fermentation. Scanning electron micrographs of a sensitive isolate L. plantarum revealed the formation of pores on cell surfaces followed by rapid cell wall destruction 1 h after the addition of nisin.

  • PDF

Growth of Lactic Acid Bacteria and Quality Characteristics of Baechu Kimchi Prepared with Various Salts and Concentration (소금의 종류와 침지 농도에 따른 배추김치의 젖산균의 생육과 품질 특성)

  • Kim, Da-Mee;Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.29 no.3
    • /
    • pp.286-297
    • /
    • 2014
  • This study was conducted to evaluate the growth of lactic acid bacteria and quality characteristics of Baechu kimchi prepared with four types of salt (Solar salt, Flower salt, Hanju salt, and Roasted salt) at two different concentrations (10, 15%) during storage. The quality characteristics of kimchi were examined by investigating acid production, growth of lactic acid bacteria, sensory properties, salinity, texture, and color characteristics. Baechu kimchi was fermented for 18 days at $10^{\circ}C$. The pH and total acidity did not change during storage according to type and concentration of salt. Growth of lactic acid bacteria was not affected by type of salt, whereas it was inhibited at 15% salt concentration after 9 days of fermentation. In the quantitative descriptive analysis of sensory properties, kimchi prepared with 10% salt showed significantly higher scores in term of overall acceptability (p<0.05). Meanwhile, there was no significant difference by type of salt. For texture characteristics, hardness of kimchi prepared with 10% salt was significantly higher than that with 20% salt. For color characteristics, L value (brightness) and b values (yellowness) of kimchi prepared with 10% salt increased during fermentation, whereas a value (redness) did not change by type and concentration of salt. The results of this study show that there were no considerable differences in quality characteristics of Baechu kimchi prepared with various types and concentrations of salt. However, Solar salt resulted in more favorable sensory properties and salinity of kimchi than any other types. Further, kimchi prepared with 10% salt showed significantly higher scores in terms of overall acceptability, growth of lactic acid bacteria, salinity, texture, and color characteristics.