In Vitro Antineoplastic Effects of Chitosan Hydrolysates on Various Tumor Cell Lines

키토산 가수분해물의 In Vitro 항종양성

  • Park, Heon-Kuk (Dept. of Food and Nutrition, Dongnam Health University)
  • 박헌국 (동남보건대학 식품영양과)
  • Published : 2009.12.31

Abstract

In this study, the antineoplastic effects of chitosan hydrolysates were assessed. The chitosan hydrolysates showed no cytotoxicity in in vitro trials using the normal cell line, Vero E6(Africa green monkey kidney cells). The $IC_{50}$ value of the chitosan hydrolysates on Vero E6 was 1,107.95 ${\mu}g/m{\ell}$. The hydrolysates exhibited in vitro antineoplastic activity in five human tumor (lung carcinoma, bladder carcinoma, colon carcinoma, stomach carcinoma, breast carcinoma) cell lines. The $IC_{50}$ values of the hydrolysates on A549, J82, SNU-C4, SNU-1, and ZR75-1 cells were 421.06, 417.99, 445.54, 380.65 and 460.49 ${\mu}g/m{\ell}$, respectively.

키토산 가수분해물의 세포 독성 및 항종양성 실험에서 키토산 가수분해물은 정상세포주인 Vero E6(Africa green monkey kidney cell)에 대한 세포 독성을 거의 나타내지 않았다. 정상세포주에 대한 키토산 가수분해물의 $IC_{50}$값은 1,107.95 ${\mu}g/m{\ell}$이었다. 키토산 가수분해물은 폐암 세포주인 A549, 방광암 세포주인 J82, 대장암 세포주인 SNU-C4, 위암 세포주인 SNU-1, 유방암 세포주인 ZR75-1 등과 같은 사람의 종양세포주에 대한 in vitro 항종양성을 나타내었다. 종양세포주에 대한 키토산 가수분해물의 $IC_{50}$값은 A549, J82, SNU-C4, SNU-1, ZR75-1 세포주의 경우에 각각 421.06 ${\mu}g/m{\ell}$, 417.99 ${\mu}g/m{\ell}$, 445.54 ${\mu}g/m{\ell}$, 380.65 ${\mu}g/m{\ell}$, and 460.49 ${\mu}g/m{\ell}$이었다.

Keywords

References

  1. Cho HR, Chang DS, Lee WD, Jeong ET, Lee EW. 1998. Utilization of chitosan hydrolysate as a natural food preservative for fish meat paste products. Korean J Food Sci Technol 30:817-822
  2. Hahn HG, Nam KD. 2004. Fungicidal activities of chitosan against plant pathogens. J Chitin Chitosan 9:73-78
  3. Jeon YJ, Kim SK. 1997. Antimumor, antibacterial and calcium absorption acceleration effects of chitosan oligosaccharides prepared by using ultrafiltration membrane enzyme reacter. Korean J Chitin and Chitosan 2:60-78
  4. Jin SS, Oh DH. 2004. Combined effect of chitosan oligosaccharide and monolaurin about Listeria monocytogenes. J Chitin Chitosan 9:68-72
  5. Kendra DF, Hadwiger LA. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in pisum savitum. Exp Mycol 8:276-281 https://doi.org/10.1016/0147-5975(84)90013-6
  6. Kim HS, Seong JH. 2008. Effects of chitosan oligosaccharide supplementation on blood glucose, lipid components, and enzyme activities in hyperglycemic rats. Korean J Food & Nutr 21:328-335
  7. Nam MY, Shon YH, Kim SK, Kim CH, Nam KS. 1999. Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells. J Chitin Chitosan 4:184-188
  8. Park HK. 1999. Aggregation property of chitosan and chitooligosaccharides. Korean J Food & Nutr 12:597-602
  9. Park HK. 2001. Antimicrobial activity of chitooligosaccharides. Korean J Food & Nutr 14:579-584
  10. Park HK. 2009. Antineoplastic effect of low molecular weight chitooligosaccharide on various tumor cell lines. Korean J Food & Nutr 22:308-312
  11. Park PJ, Kim SK, Lee HK. 2002. Antimicrobial activity of chitooligosaccharides on Vibrio parahaemolyticus. J Chitin Chitosan 7:225-230
  12. Ryu BH. 1992. Antitumor and immunological activity of chitosan extracted from shell of shrimp. J Korean Food Nutr 21:154-162
  13. Shimojoh M, Masaki K, Kurita K, Fukoshima K. 1996. Bactericidal effect of chitosan from squid pens on oral streptococci. Nippion Nogeikagaku Kaishi 70:787-792 https://doi.org/10.1271/nogeikagaku1924.70.787
  14. Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S. 1988. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem Pharm Bull 36:784-790 https://doi.org/10.1248/cpb.36.784
  15. Uchida Y, Izumi M, Ohtakara A. 1988. Preparation of chitosan oligomers with purified chitosanase and its application. Annual Review of Japanese Society for Chitin and Chitosan 1988:93-102