DOI QR코드

DOI QR Code

Effect of Dihydroxybenzoic Acid Isomers on the Analysis of Polyethylene Glycols in MALDI-MS

  • Lee, Ae-Ra (Department of Chemistry, Chungnam National University) ;
  • Yang, Hyo-Jik (Department of Chemistry, Chungnam National University) ;
  • Kim, Yang-Sun (ASTA Inc., Gyeonggi Biocenter) ;
  • Kim, Jeong-Kwon (Department of Chemistry, Chungnam National University)
  • Published : 2009.05.20

Abstract

The effects of different dihydroxybenzoic acid (DHB) isomers, when used as matrix materials in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), were investigated in analyses of polyethylene glycol (PEG) polymers. PEG polymers ranging from 400 to 8,000 Da were prepared in different DHB isomer matrices using solvent-based and solvent-free methods. PEG samples were detected only in matrices of 2,3-DHB, 2,5-DHB, and 2,6-DHB while the most intense peaks were observed using 2,6-DHB in both solvent-free and solvent-based preparations.

Keywords

References

  1. Ho, K. C.; Lin, Y. S.; Chen, Y. C. Rapid Commun. Mass Spectrom. 2003, 17, 2683 https://doi.org/10.1002/rcm.1247
  2. Horneffer, V.; Dreisewerd, K.; Lüdemann, H. C.; Hillenkamp, F.; Läge, M.; Strupat, K. Int. J. Mass Spectrom. 1999, 185-187, 859 https://doi.org/10.1016/S1387-3806(98)14218-5
  3. Krause, J.; Stoeckli, M.; Schlunegger, U. P. Rapid Commun. Mass Spectrom. 1996, 10, 1927 https://doi.org/10.1002/(SICI)1097-0231(199612)10:15<1927::AID-RCM709>3.0.CO;2-V
  4. Choi, S. S.; Ha, S. H. Bull. Korean Chem. Soc. 2007, 28, 2508 https://doi.org/10.5012/bkcs.2007.28.12.2508
  5. Jessome, L.; Hsu, N. Y.; Wang, Y. S.; Chen, C. H. Rapid Commun. Mass Spectrom. 2008, 22, 130 https://doi.org/10.1002/rcm.3343
  6. Hanton, S. D.; Liu, X. M. Anal. Chem. 2000, 72, 4550 https://doi.org/10.1021/ac000095n
  7. Whittal, R. M.; Schriemer, D. C.; Li, L. Anal. Chem. 1997, 69, 2734 https://doi.org/10.1021/ac970002a
  8. Weidner, S. M.; Trimpin, S. Anal. Chem. 2008, 80, 4349 https://doi.org/10.1021/ac8006413
  9. Hortal, A. R.; Hurtado, P.; Martinez-Haya, B.; Arregui, A.; Banares, L. J. Phys. Chem. B 2008, 112, 8530 https://doi.org/10.1021/jp802089r
  10. Marie, A.; Fournier, F.; Tabet, C. J. Anal. Chem. 2000, 72, 5106 https://doi.org/10.1021/ac000124u
  11. Skelton, R.; Dubois, F.; Zenobi, R. Anal. Chem. 2000, 72, 1707 https://doi.org/10.1021/ac991181u
  12. Przybilla, L.; Brand, J. D.; Yoshimura, K.; Rader, H. J.; Mullen, K. Anal. Chem. 2000, 72, 4591 https://doi.org/10.1021/ac000372q
  13. Trimpin, S.; Keune, S.; Rader, H. J.; Mullen, K. J. Am. Soc. Mass Spectrom. 2006, 17, 661 https://doi.org/10.1016/j.jasms.2006.01.007
  14. Trimpin, S.; Rader, H. J.; Müllen, K. Int. J. Mass Spectrom. 2006, 253, 13 https://doi.org/10.1016/j.ijms.2005.10.008
  15. Trimpin, S.; McEwen, C. N. J. Am. Soc. Mass Spectrom. 2007, 18, 377 https://doi.org/10.1016/j.jasms.2006.09.006
  16. Hanton, S. D.; Parees, D. M. J. Am. Soc. Mass Spectrom. 2005, 16, 90 https://doi.org/10.1016/j.jasms.2004.09.019
  17. Trimpin, S.; Deinzer, M. L. J. Am. Soc. Mass Spectrom. 2007, 18, 1533 https://doi.org/10.1016/j.jasms.2007.04.017
  18. Hanton, S. D.; McEvoy, T. M.; Stets, J. R. J. Am. Soc. Mass Spectrom. 2008, 19, 874 https://doi.org/10.1016/j.jasms.2008.02.009
  19. Keller, B. O.; Li, L. J. Am. Soc. Mass Spectrom. 2006, 17, 780 https://doi.org/10.1016/j.jasms.2006.02.012
  20. Trimpin, S.; Weidner, S. M.; Falkenhagen, J.; McEwen, C. N. Anal. Chem. 2007, 79, 7565 https://doi.org/10.1021/ac070986w
  21. Schiller, J.; Suss, R.; Fuchs, B.; Muller, M.; Petkovic, M.; Zschornig, O.; Waschipky, H. Eur. Biophys. J. 2007, 36, 517 https://doi.org/10.1007/s00249-006-0090-6
  22. Erb, W. J.; Hanton, S. D.; Owens, K. G. Rapid Commun. Mass Spectrom. 2006, 20, 2165 https://doi.org/10.1002/rcm.2568

Cited by

  1. Mass spectrometry in polymer chemistry: a state-of-the-art up-date vol.1, pp.5, 2010, https://doi.org/10.1039/b9py00347a
  2. Comparison of peptide guanidination efficiency using various reaction conditions vol.25, pp.2, 2012, https://doi.org/10.5806/AST.2012.25.2.114
  3. Enhanced Detection of Glycans by MALDI-TOF Mass Spectrometry Using a Binary Matrix of 2,5-Dihydroxybenzoic Acid and 2,6-Dihydroxybenzoic Acid vol.4, pp.2, 2013, https://doi.org/10.5478/MSL.2013.4.1.38
  4. Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS vol.5, pp.2, 2014, https://doi.org/10.5478/MSL.2014.5.2.49
  5. Matrix Additives in MALDI-TOF MS Analysis of Glycans vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10617
  6. MALDI ionization mechanisms investigated by comparison of isomers of dihydroxybenzoic acid vol.51, pp.1, 2015, https://doi.org/10.1002/jms.3725
  7. Current literature in mass spectrometry vol.44, pp.11, 2009, https://doi.org/10.1002/jms.1496
  8. Detection of Long Alkyl Esters of Succinic and Maleic Acid Using TLC-MALDI-MS vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.915
  9. Analysis of oligosaccharides in beer using MALDI-TOF-MS vol.134, pp.3, 2009, https://doi.org/10.1016/j.foodchem.2012.03.069
  10. Using solid‐state nuclear magnetic resonance to rationalize best efficiency of 2,6‐dihydroxybenzoic acid over other 2,X‐dihydroxybenzoic acid isomers in solvent‐free matrix vol.35, pp.3, 2009, https://doi.org/10.1002/rcm.8966
  11. Experimental and Computational Study of Aminoacridines as MALDI(−)-MS Matrix Materials for the Analysis of Complex Samples vol.32, pp.4, 2021, https://doi.org/10.1021/jasms.1c00037