DOI QR코드

DOI QR Code

Molecular Recognition of Neutral Substrates by New Tetraaminocalix[4]arene Derivative

  • Nimse, Satish Balasaheb (Institute for Applied Chemistry and Department of Chemistry, Hallym University) ;
  • Song, Keum-Soo (Biometrix Technology, Inc., 202 BioVenture Plaza) ;
  • Jung, Chan-Yong (Biometrix Technology, Inc., 202 BioVenture Plaza) ;
  • Eoum, Woon-Yong (Biometrix Technology, Inc., 202 BioVenture Plaza) ;
  • Kim, Tai-Sun (Institute for Applied Chemistry and Department of Chemistry, Hallym University)
  • Published : 2009.06.20

Abstract

The recognition of neutral aromatic substrates by different neutral calix[4]arene receptors 1, 2, and 3 was studied by NMR spectroscopy. The stoichiometry is 1:1 in all cases as was confirmed by jobs plot. Owing to the deep cavity, 1 affords stronger binding abilities for substrate 4 and 5, while all receptors remained inert for substrates 6 and 7. The binding constants determined by $^1H$ NMR titration show that the recognition of substrate 4 by 1 gives strongest complexation ($K_a\;of\;9.8\;{\times}\;102\;M^{-1}$).

Keywords

References

  1. Gutsche, C. D. In Calixarenes Revisited; Royal Society of Chemistry : Cambridge, 1998; p 50.
  2. Ikeda, A.; Shinkai, S. Chem Rev. 1997, 97, 1713. https://doi.org/10.1021/cr960385x
  3. Bohmer, V. Angew. Chem. Int. Ed. Engl. 1995, 34, 713. https://doi.org/10.1002/anie.199507131
  4. Vicens, J.; Bohmer, V. In Calixarenes: A Versatile Class of Macrocyclic Compounds; Kluwer: Dordrecht, 1991; p 127.
  5. Lhotak, P.; Zieba, R.;Hromadka, V.; Stibor, I.; Sykora, J. Tetrahedron Lett. 2003, 44, 4519. https://doi.org/10.1016/S0040-4039(03)00994-8
  6. Oh, S. W.; Moon, J. D.; Lim, H. J.; Park, S. Y.; Kim, T.; Park, J.; Han, M. H.; Snyder, M.; Choi, E. Y.; J. Fed. A. Soc. Exp. Biol. 2005, 19, 1335.
  7. Jung, H.; Song, K.; Kim, T. Bull. KoreanChem. Soc. 2007, 28, 1792. https://doi.org/10.1016/S0040-4020(02)00837-2
  8. Demody, D. L.; Crooks, M. R.;Kim, T. J. Am. Chem. Soc. 1996, 118, 11912. https://doi.org/10.1080/00397910600978150
  9. Dermody, D.L.; Lee, Y.; Kim, T.; Crooks, R. M. Langmuir 1999, 15, 8435. https://doi.org/10.1021/la981080b
  10. Lee, Y.; Lee, E. K.; Cho, Y. W.; Matsui, T.; Kang, I.; Kim, T.;Han, M. H. Proteomics 2003, 3, 2289. https://doi.org/10.1016/j.tetasy.2005.10.039
  11. Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc. Chem. Comm. 1979, 1005. https://doi.org/10.1002/chir.20483
  12. Nachtigall, F. F.; Lazzarotto, M.;Nome, F. J. Braz. Chem. Soc. 2002, 13, 295. https://doi.org/10.1021/cr9603845
  13. Yilmaz, A.; Memon, S.; Yilmaz, M. Tetrahedron 2002, 58, 7735. https://doi.org/10.1016/S0040-4020(02)00837-2
  14. Chawla, H. M.; Singh, S. P. Tetrahedron 2008, 64, 741. https://doi.org/10.1016/S0040-4020(03)01126-8
  15. Sdira, S. B.; Felix, C.;Giudicelli, M.; Vocanson, F.;Perrin, M.; Lamartine, R. Tetrahedron Letters 2005, 46, 5659. https://doi.org/10.1021/ol0605124
  16. Yang, F.; Ji, Y.; Guo, H.; Lin, J.; Peng, Q. Syn. Comm. 2007, 37, 79. https://doi.org/10.1016/j.ica.2006.07.027
  17. Baklouti, L.; Cherif, J.; Abidi, R.; Arnaud-Neu, F.;Harrowfield, J.; Vicens, J. Org. Biomol. Chem 2004, 2, 2786. https://doi.org/10.1039/b603082n
  18. Kang, S. O.; Nam, K. C. Bull. Korean Chem. Soc. 2002, 23, 640. https://doi.org/10.1016/S0040-4020(01)87673-0
  19. Baldini, L.; Sansone, F.; Casnati, A.; Ugozzoli, F.; Ungaro, R. J. Supra. Chem. 2002, 2, 219. https://doi.org/10.1021/ja00115a012
  20. Miyaji, H.; Dudic, M.;Tucker, J. H. R.; Prokes, I.; Light, M. E.; Hursthouse, M. B.;Stibor, I.; Lhotak, P. Tetrahedron Lett. 2002, 43, 873. https://doi.org/10.1016/S0040-4039(00)98293-5
  21. Kumar, S.; Chawla, H. M.; Varadarajan, R. Tetrahedron Lett. 2002, 43, 2495. https://doi.org/10.1016/S0040-4039(02)00325-8
  22. Garrier, E.; Le Gac, S. L.; Jabin, I. Tetrahedron: Asymmetry 2005, 16, 3767. https://doi.org/10.1016/j.tetasy.2005.10.039
  23. Chawla, H. M.; Sahu, S. M.; Shrivastava, R. Tetrahedron Letters 2007, 48, 6054. https://doi.org/10.1016/j.tetlet.2007.06.075
  24. Kocabas, E.; Durmaz, M.; Alpaydin, S.; Sirit, A.; Yilmaz, M. Chirality 2008, 20, 26. https://doi.org/10.1002/chir.20483
  25. Korbakov, N.; Timmerman, P.; Lidich, N.; Urbach, B.; Saar, A.; Yitzchaik, S. Langmuir 2008, 24, 2580. https://doi.org/10.1021/jo00104a044
  26. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. https://doi.org/10.1021/cr9603845
  27. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486.
  28. Masci, B.; Persiani, D.; Thuery, P. J. Org. Chem. 2006, 71, 9784. https://doi.org/10.1021/jo0617621
  29. Lehn, J.; Vogle, F.; MacNicol, D. D.; Davis, J. E.; Atwood, J. L. In Comprehensive Supramolecular Chemistry; Pergamon: UK,1996; p 69.
  30. Arduini, A.; Brindani, E.; Giorgi, G.; Pochini, A.; Secchi, A. Tetrahendron 2003, 59, 7587. https://doi.org/10.1016/S0040-4020(03)01126-8
  31. Chawla, H. M.; Pant, N.; Srivastava, B.; Upreti, S. Org. Lett.2006, 8, 2237. https://doi.org/10.1021/ol0605124
  32. Chawla, H. M.; Singh, S. P.; Sahu, S. N.;Upreti, S. Tetrahedron 2006, 62, 7854. https://doi.org/10.1016/j.tet.2006.05.040
  33. Valeur, B.; Leray, I. Inorg. Chim. Acta 2007, 360, 765. https://doi.org/10.1016/j.ica.2006.07.027
  34. Petrella, A. J.; Raston, C. L. J. Organomet. Chem. 2004, 689, 4125. https://doi.org/10.1016/j.jorganchem.2004.07.065
  35. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3. https://doi.org/10.1016/S0010-8545(00)00246-0
  36. Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Chem. Soc. Rev. 2007, 36, 254. https://doi.org/10.1039/b603082n
  37. Iqbal, M.; Mangiafico, T.; Gutsche, C. D. Tetrahedron 1987, 43, 4917. https://doi.org/10.1016/S0040-4020(01)87673-0
  38. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M.; Ehberink, R. J. M.; Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767. https://doi.org/10.1021/ja00115a012
  39. Shinkai, S.; Tsubaki, T.; Sone, T.; Manabe, O. Tetrahedron Letters 1985, 26, 3343. https://doi.org/10.1016/S0040-4039(00)98293-5
  40. Zhang, W.; Zheng, Y.; Huang, Z. Synth. Commun. 1997, 27, 3763. https://doi.org/10.1080/00397919708007300
  41. Kumar, S.; Kurur, N. D.; Chawla, H. M.; Varadarajan, R. Synth. Commun. 2001, 31, 775. https://doi.org/10.1081/SCC-100103269
  42. Wageningen, A. M. A.; Snip, E.; Verboom. W.; Reinhoudt, D. N.; Boerrigter, H. Liebigs Ann/Recueil 1997, 2235.
  43. Furnis, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell A. R. In Vogel's Text Book of Practical Organic Chemistry; Longmann: England, 1989; p 902.
  44. Shalley, A. C. In Analytical Methods in Supramolecular Chemistry; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007; p 39.
  45. Rose, N. J.; Drago, R. S. J. Am. Chem. Soc.Bull. Korean Chem. Soc. 1959, 81, 6138. https://doi.org/10.1021/ja01532a009
  46. Scheerder, J.; Fochi, M.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1994, 59, 7815. https://doi.org/10.1021/jo00104a044

Cited by

  1. 9G DNAChip: microarray based on the multiple interactions of 9 consecutive guanines vol.47, pp.25, 2011, https://doi.org/10.1039/c1cc12489g
  2. Biological applications of functionalized calixarenes vol.42, pp.1, 2013, https://doi.org/10.1039/C2CS35233H
  3. Biomarker detection technologies and future directions vol.141, pp.3, 2016, https://doi.org/10.1039/C5AN01790D
  4. Detection, quantification, and profiling of PSA: current microarray technologies and future directions vol.6, pp.9, 2016, https://doi.org/10.1039/C5RA20313A
  5. Immobilization Techniques for Microarray: Challenges and Applications vol.14, pp.12, 2014, https://doi.org/10.3390/s141222208
  6. Aminocalix[4]arene: the effect of pH on the dynamics of gate and portals on the hydrophobic cavity vol.51, pp.47, 2010, https://doi.org/10.1016/j.tetlet.2010.09.067
  7. Macrocycles and Supramolecules as Antioxidants: Excellent Scaffolds for Development of Potential Therapeutic Agents vol.9, pp.9, 2009, https://doi.org/10.3390/antiox9090859