DOI QR코드

DOI QR Code

Hydrogen Production from Photo Splitting of Water Using the Ga-incorporated TiO2s Prepared by a Solvothermal Method and Their Characteristics

  • Chae, Jin-Ho (Department of Chemistry, College of Science, Yeungnam University) ;
  • Lee, Ju-Hyun (Department of Chemistry, College of Science, Yeungnam University) ;
  • Jeong, Jong-Hwa (Department of Chemistry, Kyungpook National University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Published : 2009.02.20

Abstract

This study investigated the production of hydrogen over Ga (1.0, 2.0, and 5.0 mol%)-$TiO_2$ photocatalysts prepared by a solvothermal method. The absorption band was slightly blue-shifted upon the incorporation of the gallium ions, but the intensity of the photoluminescence (PL) curves of Ga-incorporated $TiO_2$s was distinguishably smaller, with the smallest case being the 2.0 mol% Ga-$TiO_2$, which was related to the recombination between the excited electrons and holes. $H_2$ evolution from photo splitting of water over Ga-incorporated $TiO_2$ in the liquid system was enhanced, compared to that over pure $TiO_2$; particularly, the production of 5.6 mL of $H_2$ gas after 8 h when 1.5 g of the 2.0 mol% Ga-incorporated $TiO_2$ was used.

Keywords

References

  1. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27, 991 https://doi.org/10.1016/S0360-3199(02)00022-8
  2. Mizoguchi, H.; Ueda, K.; Orita, M.; Moon, S. C.; Kajihara, K.; Hirano, M.; Hosono, H. Mater. Res. Bull. 2000, 37, 2401 https://doi.org/10.1016/S0025-5408(02)00974-1
  3. Ye, J.; Zou, Z.; Matsushita, A. Int. J. Hydrogen Energy 2003, 28, 651 https://doi.org/10.1016/S0360-3199(02)00158-1
  4. Hara, M.; Takata, T.; Kondo, J. N.; Domen, K. Catal. Today 2004, 90, 313 https://doi.org/10.1016/j.cattod.2004.04.040
  5. Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. Catal. Today 2003, 78, 555 https://doi.org/10.1016/S0920-5861(02)00354-1
  6. Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Solid State Ionics 2004, 172, 591 https://doi.org/10.1016/j.ssi.2004.04.033
  7. Jang, J. S.; Kim, H. G.; Reddy, V. R.; Bae, S. W.; Ji, S. M.; Lee, J. S. J. Catal. 2005, 231, 213 https://doi.org/10.1016/j.jcat.2005.01.026
  8. Park, M.-S.; Kang, M. Int. J. Hydrogen Energy 2007, 32, 4840 https://doi.org/10.1016/j.ijhydene.2007.07.045
  9. Choi, H.-J.; Kang, M. Int. J. Hydrogen Energy 2007, 32, 3841 https://doi.org/10.1016/j.ijhydene.2007.05.011
  10. Jeon, M.-K.; Park, J.-W.; Kang, M. J. Ind. Eng. Chem. 2007, 13, 84
  11. Park, J.-W.; Kang, M. Mater. Lett. 2008, 62, 183 https://doi.org/10.1016/j.matlet.2007.04.105
  12. Zou, J.-J.; He, H.; Cui, L.; Du, H.-Y. Int. J. Hydrogen Energy 2007, 32, 1762 https://doi.org/10.1016/j.ijhydene.2006.11.030
  13. Ikuma, Y.; Bessho, H. Int. J. Hydrogen Energy 2007, 32, 2689 https://doi.org/10.1016/j.ijhydene.2006.09.024
  14. Yang, Y. Z.; Chang, C.-H.; Idriss, H. Appl. Catal. B: Environ. 2006, 67, 217 https://doi.org/10.1016/j.apcatb.2006.05.007
  15. Wu, N.-L.; Lee, M.-S.; Pon, Z.-J.; Hsu, J.-Z. J. Photochem. Photobiol. A: Chem. 2004, 163, 277 https://doi.org/10.1016/j.jphotochem.2003.12.009
  16. Mouider, J. F.; Stickle, W. F.; Soboi, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Coporation: USA, 1992; p 90
  17. Lee, B.-Y.; Park, S.-H.; Lee, S.-C.; Kang, M.; Park, C.-H.; Choung, S.-J. J. Ind. Eng. Chem. 2003, 20, 812 https://doi.org/10.1021/ie50224a011

Cited by

  1. MoO3 and Cu0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis vol.46, pp.24, 2010, https://doi.org/10.1039/c000003e
  2. Using a Solvothermal Method and its Photovoltaic Efficiency on Dye-sensitized Solar Cells vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3317
  3. Room Temperature Synthesis of Ti–MCM-48 and Ti–MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water vol.116, pp.1, 2012, https://doi.org/10.1021/jp210448v
  4. Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides vol.2, pp.9, 2012, https://doi.org/10.1039/c2cy20247f
  5. Photocatalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/201492
  6. High-Efficiently Photoelectrochemical Hydrogen Production over Zn-Incorporated Nanotubes vol.2012, pp.1687-529X, 2012, https://doi.org/10.1155/2012/843042
  7. Materials vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1220
  8. Inorganic Photocatalysts for Overall Water Splitting vol.7, pp.4, 2012, https://doi.org/10.1002/asia.201100772
  9. The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis vol.10, pp.3, 2014, https://doi.org/10.1007/s13273-014-0033-8
  10. Photocatalytic Hydrogen Generation from Pure Water using Silicon Carbide Nanoparticles vol.2, pp.2, 2014, https://doi.org/10.1002/ente.201300124
  11. Doping of Titania and Detrimental Effect of Structural Disorder on Ga Overloading vol.2014, pp.1687-4129, 2014, https://doi.org/10.1155/2014/468271
  12. Enhancement of Hydrogen Productions by Accelerating Electron-Transfers of Sulfur Defects in the CuS@CuGaS2 Heterojunction Photocatalysts vol.9, pp.1, 2019, https://doi.org/10.3390/catal9010041
  13. Facile fabrication of hierarchical N-doped GaZn mixed oxides for water splitting reactions vol.20, pp.34, 2009, https://doi.org/10.1039/c0jm01098g
  14. Facile synthesis of core–shell SnO2/V2O5 nanowires and their efficient photocatalytic property vol.124, pp.1, 2010, https://doi.org/10.1016/j.matchemphys.2010.07.023
  15. 전기방사를 이용한 Ga이 첨가된 나노섬유의 제작 및 특성평가 vol.22, pp.6, 2009, https://doi.org/10.6111/jkcgct.2012.22.6.274
  16. Enhancing the photocatalytic activity of Ga2O3–TiO2 nanocomposites using sonication amplitudes for the degradation of Rhodamine B dye vol.34, pp.2, 2009, https://doi.org/10.1002/aoc.5336
  17. A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource vol.30, pp.10, 2020, https://doi.org/10.1007/s10904-020-01611-9
  18. Plasmon-Induced Hot Electron Amplification and Effective Charge Separation by Au Nanoparticles Sandwiched between Copper Titanium Phosphate Nanosheets and Improved Carbon Dioxide Conversion to Methane vol.8, pp.50, 2009, https://doi.org/10.1021/acssuschemeng.0c06983